Vector spectral functions at finite temperature

Harvey Meyer Johannes Gutenberg University Mainz

German-Japanese Workshop 2024, Mainz, 25 September 2024

Harvey Meyer Vector spectral functions

This talk is mainly based on the following publications:

- 2001.03368 (PRD): Rate of photon production in the quark-gluon plasma from lattice QCD, Marco Cè, Tim Harris, HM, Aman Steinberg, Arianna Toniato.
- 2205.02821 (PRD): Photon emissivity of the quark-gluon plasma: A lattice QCD analysis of the transverse channel, Marco Cè, Tim Harris, Ardit Krasniqi, HM, Csaba Török.
- 2309.09884 (PRD): Probing the photon emissivity of the quark-gluon plasma without an inverse problem in lattice QCD, Marco Cè, Tim Harris, Ardit Krasniqi, HM, Csaba Török.
- 2407.01657: Hot QCD matter around the chiral crossover: A lattice study with O(a)-improved Wilson fermions, Ardit Krasniqi, Marco Cè, Renwick Hudspith, HM.

Polarisation tensor at finite temperature and photon emissivity

$$\rho^{\mu\nu}(\omega, \mathbf{k}) = \int d^4x \, e^{i(\omega x^0 - \mathbf{k} \cdot \mathbf{x})} \, \frac{1}{Z} \sum_n e^{-E_n/T} \langle n | [j^{\mu}(x), j^{\nu}(0)] | n \rangle$$

• at finite temperature, there are two independent, O(3) invariant components: $(k \equiv |\mathbf{k}|, \hat{k}^i = k^i/k)$

$$\boldsymbol{\rho_L}(\omega,k) \equiv (\hat{k}^i \hat{k}^j \rho^{ij} - \rho^{00}), \qquad \boldsymbol{\rho_T}(\omega,k) \equiv \frac{1}{2} (\delta^{ij} - \hat{k}^i \hat{k}^j) \rho^{ij}.$$

• current conservation: $\omega^2 \rho^{00}(\omega, k) = k^i k^j \rho^{ij}(\omega, k)$ implies that ρ_L vanishes at lightlike kinematics, $\mathcal{K}^2 = 0$.

Photon emissivity can be written [McLerran, Toimela 1985]

$$d\Gamma_{\gamma}(\boldsymbol{k}) = \alpha \; \frac{d^3k}{2\pi^2 k} \; \frac{\sigma(k)}{e^{\beta k} - 1},$$
$$\sigma(k) \equiv (\rho_T + \frac{\lambda}{2}\rho_L)(\omega = k, k) \quad (\forall \lambda).$$

Predictions for $\sigma(k)$ in non-Abelian plasmas:

intercept = $T \cdot D$,

D = diffusioncoefficient.

• $\sigma(\omega)$ vanishes in the vacuum;

- at $\omega \neq 0$ it vanishes for thermal, non-interacting quarks;
- ideal probe of the medium!

Arnold, Moore Yaffe JHEP 11 (2001) 057; JHEP 12 (2001) 009. NLO: Ghiglieri et al 1302.5970. AdS/CFT: Caron-Huot et al. JHEP 12 (2006) 015.

Lattice QCD and vector correlators

Imaginary-time path-integral representation of QFT (Matsubara formalism).

Imaginary-time vector correlators ({ $\gamma^{\mu}, \gamma^{\nu}$ } = $2g^{\mu\nu} = 2diag(1, -1, -1, -1)$),

$$G^{\mu\nu}(x_0, \boldsymbol{k}) = \int d^3x \; e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \operatorname{Tr}\Big\{\frac{e^{-\beta H}}{Z(\beta)} j^{\mu}(x) \; j^{\nu}(0)\Big\}, \qquad j^{\mu} = \sum_f Q_f \; \bar{\psi}_f \gamma^{\mu} \psi_f$$

Spectral representation at fixed spatial momentum k: (*u* is a real four-vector)

$$u_{\mu}G^{\mu\nu}u_{\nu}(x_{0},\boldsymbol{k}) = \int_{0}^{\infty} \frac{d\omega}{2\pi} \underbrace{\underbrace{(u_{\mu}\rho^{\mu\nu}u_{\nu})(\omega,\boldsymbol{k})}_{\geq 0}}_{\geq 0} \cosh[\omega(\beta/2-x_{0})].$$

→ inverse problem.

Studied on the lattice at $k \neq 0$ since Aarts et al hep-lat/0610061.

Choosing λ : weak and strong coupling spectral functions

Spatial momentum $k = \pi T$: (see Caron-Huot et al '06 and Laine 1310.0164)

- ρ_T is positive-definite and free of the diffusion pole
- $(\rho_T \rho_L)$ vanishes in the vacuum, is strongly suppressed at large ω and obeys a superconvergent sum-rule.
- At \u03c6 = k, the two channels should be equal: non-trivial consistency check for lattice-based calculations!

Parameters of the lattice calculations

- N_f = 2 flavours of dynamical O(a) improved Wilson fermions with Wilson gauge action; ensembles generated with the openQCDv1.6 code.
- $T \simeq 254 \text{ MeV}, \ L = 4/T \simeq 3.1 \text{ fm}; \ m_{\pi}(T = 0) \simeq 270 \text{ MeV}.$
- Isovector current correlator is computed.

label	1/(aT)
F7	12
07	16
W7	20
X7	24

See 2001.03368 $(\rho_T - \rho_L)$, and 2205.02821 (ρ_T) .

Final result of analysis of the $(\rho_T - \rho_L)$ channel

$$D_{\text{eff}}(k) \equiv \frac{\rho(\omega=k,k,\lambda)}{4\chi_s k}, \qquad \chi_s = \beta \int d^3x \langle V_0(x)V_0(0) \rangle.$$

Cè et al. 2205.02821 (PRD).

Final result for the photon emissivity from the transverse channel

- The band represents the spread resulting from 68% of successful fits.
- Most fits give a larger photon emissivity than the weak-coupling prediction, but overall the lattice result is still compatible with it.
- ► The AdS/CFT prediction is also consistent with the lattice data for $k \gtrsim \pi T/2$.

2205.02821 Török et al.

A dispersion relation for a Euclidean correlator at zero virtuality

let

$$H_E(\omega_n) \equiv -\int_0^\beta dx_0 \, \int d^3x \, e^{\omega_n(ix_0+x_3)} \, \left\langle j_1(x)j_1(0) \right\rangle$$

be the momentum-space Euclidean correlator with *imaginary* spatial momentum $k = i\omega_n$;

• once-subtracted dispersion relation: ($\sigma(\omega) \sim \omega^{1/2}$ at weak coupling)

$$H_E(\omega_n) = -\frac{\omega_n^2}{\pi} \int_0^\infty \frac{d\omega}{\omega} \frac{\sigma(\omega)}{\omega^2 + \omega_n^2}$$

 \blacktriangleright these energy-moments of $\sigma(\omega)$ are directly accessible without involving an inverse problem.

HM, 1807.00781 (EPJC).

How different energy-moments probe $\sigma(\omega)$

• $H_E(\omega_1)$ receives a sizeable contribution from the soft photons;

• $H_E(\omega_2) - H_E(\omega_1)$ probes the emission of hard photons.

Formulation on the lattice

Our standard representation: [Cè, ... HM, 2112.00450]

$$-H_E(\omega_n) = \int_0^\beta dx_0 \, \int d^3x \, (e^{i\omega_n x_0} - e^{i\omega_n x_2}) \, e^{\omega_n x_3} \, \langle j_1(x) j_1(0) \rangle.$$

The $e^{i\omega_n x_2}$ term subtracts a static contribution which vanishes in the continuum (for the same reason the polarisation tensor component $\Pi_{11}(q)$ vanishes at lightlike virtuality for $q_1 = 0$).

- ▶ This representation has the advantage that $H_E(\omega_n)$ vanishes exactly in the vacuum even at finite lattice spacing;
- as a consequence, cutoff effects at finite temperature are strongly reduced.

Computing $H_E(\omega_1)$

$N_f = 2$, T = 254 MeV, $N_t = 16, 20, 24$.

Treatment of integrand at long distances

Continuum extrapolation using three discretisations of the vector correlator

Result for $H_E(\omega_1)$: comparison to strong/weak-coupling predictions

Our result:
$$-H_E(\omega_1)/T^2 = 0.670(6)_{\text{stat}}(1)_{\text{syst}}$$

vs.
 $-H_E^{\text{AMY}}(\omega_1)/T^2 = 0.75\dots 0.89$
(for $\alpha_s \doteq 0.25\dots 0.31$, integrating over $0.2 \le \omega/T \le 50$)

• Comparing to strongly coupled, $N_c = \infty$, $\mathcal{N} = 4$ SYM: normalize by static susceptibility

our result:
$$-H_E(\omega_1)/\chi_s = 0.76(2)$$

vs.
 $-H_E^{\rm SYM}(\omega_1)/\chi_s = 0.6715.$

- ► $-H_E(\omega_1)$ is clearly smaller than the value predicted from the AMY spectral function $\sigma(\omega)$ using $\alpha_s = 0.25...0.31$.
- for $H_E(\omega_2)$: better control of the large x_3 regime needed.

Cè et al, 2309.09884 (PRD).

Study of spectral functions across the thermal crossover

N_f = 2 + 1 flavours of dynamical O(a) improved Wilson fermions with treelevel improved Lüscher-Weisz gauge action; ensembles generated with the openQCDv2.0 code;

•
$$m_{\pi}(T=0) = 130 \text{ MeV}, \ m_{K}(T=0) = 489 \text{ MeV};$$

- T \simeq 128, 154, 192 MeV, L = 96a = 6.1 fm; a = 0.064 fm;
- Isovector current correlators are computed.

Backus-Gilbert method to construct a smeared spectral function from the Euclidean correlator:

$$\frac{\hat{\rho}(\bar{\omega})}{\bar{\omega}} = \sum_{i=1}^{N_p} q_i(\bar{\omega}) G(\tau_i) = \int_0^\infty \mathrm{d}\omega \,\hat{\delta}(\bar{\omega},\omega) \frac{\rho(\omega)}{\omega} \,,$$

with

$$\int_0^\infty d\omega\,\hat{\delta}(\bar{\omega},\omega) = 1.$$

Phenomenological vacuum spectral functions

Figs. from Davier, Höcker, Zhang DOI:10.1103/RevModPhys.78.1043

Connection with vector spectral functions $\rho(\omega, T = 0)$ on the next slide:

$$-\int d^3x \left\langle \bar{\psi}(x)\gamma_j \frac{\tau^b}{2}\psi(x) \ \bar{\psi}(0)\gamma_i \frac{\tau^a}{2}\psi(0) \right\rangle = \delta^{ab}\delta_{ij} \int_0^\infty d\omega \ \rho(\omega,0) \ e^{-\omega x_0},$$
$$\rho(\omega,0) = \frac{1}{4\pi^2}\omega^2 v_1(\omega^2).$$

Thermal modification of the vector spectral function

 $\Delta \rho(\omega, T) \equiv \rho(\omega, T) - \rho(\omega, 0);$ $\int_0^\infty \frac{\mathrm{d}\omega}{\omega} \,\Delta \rho_V(\omega, T) = 0$

[1107.4388 Bernecker, HM; 2407.01657 Krasniqi et al.]

Idem for the axial-vector spectral function

0.05 $\hat{\rho}_{A-Arec}(\omega)/(\omega T), \lambda = 10^{-4}$ 0.04 0.03 0.02 0.01 0.00 -0.01 T = 154 MeV-0.02 ō 500 1000 1500 2000 2500 3000 3500 ω[MeV]

Behaviour consistent with the sum rule

$$2\int_0^\infty \frac{\mathrm{d}\omega}{\omega} \,\Delta\rho_A(\omega,T)$$

= $f_\pi^2(T=0) - f_\pi^2(T) + \mathcal{O}(m_q^2)$

Screening pion decay constant $f_{\pi}(T)$ is small for $T \gtrsim 140 \text{ MeV}$.

Conclusion

- Electromagnetic current two-point correlators: lattice calculations with fully dynamical quarks and the continuum limit.
- Dispersion relation at fixed photon virtuality q² = 0: the photon-energy moment |H_E(ω₁)| is smaller than the value derived from the weak-coupling spectral function σ_{AMY}(ω).
- Thermal modification of vector and axial-vector spectral functions at physical quark masses: Backus-Gilbert-smeared spectral functions qualitatively consistent with sum rules.

The axial-charge correlator

Near the chiral limit $m_q = 0$:

- below the thermal transition: propagating mode, the 'pion quasiparticle'; [Son, Stephanov hep-ph/0204226]
- above the transition: chiral symmetry is restored \Rightarrow at $m_q = 0$, ρ_{A_0} is degenerate with the isovector vector spectral function, $\rho_{V_0}(\omega, \mathbf{0}) = \chi_s \omega \delta(\omega)$; the mode is purely diffusive. [Krasniqi et al. 2407.01657]

The low-lying non-static screening spectrum

$$h_{\rm ns}(\omega_r, x_3) = \sum_n |A_n^{(r)}|^2 e^{-E_n^{(r)}|x_3|} > 0.$$

In Matsubara sector $\omega_r = 2\pi Tr$, $r \in \mathbb{Z}$: $E_n^{(r)} \ge \omega_r$ (causality).

In r = 2 sector, possible kinematic configurations:

- quark with momentum $p_0 = \pi T$, antiquark with momentum $p_0 = 3\pi T$, or the other way around.
- Low-lying states: at high T, physics of (p-wave) quarkonia in 2+1d, with a qq̄ potential mediated by static gluons.
- higher up, the spectrum becomes continuous; first threshold due to scattering states of two r = 1 screening states.

/// two-quarkonia continuum ///	_
÷	
	discrete spectrum ψ , ψ' , ψ'' ,
	$_{-}\omega_{r}$: causality lower bound
Harvey Meyer	Vector spectral functions

Continuum extrapolation of the $\rho_T - \rho_L$ Euclidean correlator

Analysis of the $(\rho_T - \rho_L)$ channel

'Hydrodynamics' prediction at small ω, k : with D the diffusion coefficient,

$$\rho(\omega, k, -2)/\omega \approx \frac{4\chi_s Dk^2}{\omega^2 + (Dk^2)^2} \qquad \omega, k \ll D^{-1}.$$

From the operator-product expansion:

$$\rho(\omega, k, \lambda = -2) \stackrel{\omega \to \infty}{\sim} k^2 / \omega^4 : \qquad \int_0^\infty d\omega \, \omega \, \rho(\omega, k, -2) = 0.$$

 \rightsquigarrow 5-parameter ansatz:

$$\rho(\omega, k, -2) = \frac{A(1 + B\omega^2) \tanh(\omega\beta/2)}{[(\omega - \omega_0)^2 + b^2][(\omega + \omega_0)^2 + b^2][\omega^2 + a^2]}.$$

Analysis strategy: always determine B so as to satisfy the sum rule; scan over all other parameters to determine the χ^2 landscape.

For an early Backus-Gilbert analysis, see Harris, Steinberg, Brandt, Francis, HM 1710.07050.

Representative spectral functions describing the lattice 2(T-L) correlator

Taking the continuum limit of $G_T(\tau, k)$

Three different discretisations, joint continuum extrapolation.

Use treelevel improvement.

Comparison of NLO+LPM spectral function to T - L lattice data

- Continuum-extrapolated quenched data from $N_t = 20, 24, 30$.
- General behaviour reproduced, but differences are visible.

2403.11647 Ali, Bala, Francis, Jackson, Kaczmarek, Turnwald, Ueding, Wink

Transverse-channel Euclidean correlator: lattice vs. NLO prediction

- NLO prediction lies a few percent higher than the lattice data.
- (For this comparison we set $\chi_s^{\text{AdS/CFT}} = \frac{N_c^2 T^2}{8} \doteq \frac{9T^2}{8}$.)

NLO prediction based on Jackson, Laine 1910.07552.

Physically motivated fit ansätze for the spectral functions

$$\rho(\omega) = \rho_{\rm fit}(\omega)(1 - \Theta(\omega, \omega_0, \Delta)) + \rho_{\rm pert}(\omega)\Theta(\omega, \omega_0, \Delta)$$

with $\omega_0 pprox 2.5 \, {\rm GeV}$ the matching frequency (similar to Ghiglieri et al 1604.07544),

$$\Theta(\omega, \omega_0, \Delta) = (1 + \tanh[(\omega - \omega_0)/\Delta])/2$$

a smooth step function and $\rho_{\rm pert}(\omega)$ from [Jackson, Laine 1910.09567].

A) Polynomial ansatz:

$$\frac{\rho_{\text{fit},1}(\omega)}{T^2} = \sum_{n=0}^{N_{\text{p}}-1} A_n \left(\frac{\omega}{\omega_0}\right)^{1+2n},$$

B) Piecewise polynomial ansatz:

$$\frac{\rho_{\text{fit},2}(\omega)}{T^2} = \begin{cases} A_0 \frac{\omega}{\omega_0} + A_1 \left(\frac{\omega}{\omega_0}\right)^3, & \text{if } \omega \le k, \\ B_0 \frac{\omega}{\omega_0} + B_1 \left(\frac{\omega}{\omega_0}\right)^3, & \text{if } \omega > k. \end{cases}$$

Representative lattice-QCD results for the spectral functions

- ▶ Piecewise polynomial cannot 'decide' between having a min. or max. at $\omega = k$.
- Qualitatively, both the 'AdS/CFT' type and the 'NLO' type are compatible with the lattice data.