2024/9/25 G-J Seminar Mainz

Finite temperature critical point in heavy-quark QCD

K. Kanaya^{I)}

with R. Ashikawa², S. Ejiri³, M. Kitazawa^{4,5}, H. Sugawara³ (WHOT-QCD Collaboration) 1) Univ. Tsukuba, 2) Osaka Univ., 3) Niigata Univ., 4) Kyoto Univ., 5) KEK J-PARC branch

CP in heavy-quark QCD

Finite-T QCD transition is important in understanding various phenomena: the early evolution of the Universe, neutron stars, quark matter in relativistic heavy-ion collisions, etc.

<= Columbia plot summarizing the nature of the QCD trans. as function of m_q 's.

We focus on the CP near the upper-right corner (hq-QCD).

A powerful way to determine CP: Binder cumulant analysis based on the expected Z(2) FSS, assuming (approx.) dominance of the leading sing. in $L \rightarrow \infty$ lim.

Large spatial lattices & high statistics

to identify the leading FSS clearly.

Reweighting to vary coupling parameters continuously

as required by Binder cumulant analyses.

Lattice setup

Lattice action: plaquette gauge + standard Wilson quarks

- Wilson quark kernel: $M_{xy}(\kappa) = \delta_{xy} \kappa \sum_{\mu} \left[(1 \gamma_{\mu}) U_{x,\mu} \delta_{y,x+\hat{\mu}} + (1 + \gamma_{\mu}) U_{y,\mu}^{\dagger} \delta_{y,x-\hat{\mu}} \right]$ = $\delta_{xy} - \kappa B_{xy}$ where $\kappa = 1/(2am_q + 8)$
- Quark contribution to the effective action: $\ln \det M(\kappa) = -\frac{1}{N_{\text{site}}n} \sum_{n=1}^{\infty} \text{Tr}[B^n] \kappa^n$
 - each term given by closed loops of *B* with κ [loop length]

Hopping Parameter Expansion

- HPE ≈ $1/(am_q)$ expansion
- \bigcirc HPE worsens with $a \rightarrow 0$ $(N_t \rightarrow \infty)$ => higher orders required.

Convergence of HPE

Wakabayashi, Ejiri, KK, Kitazawa, PTEP 2022, 033B05 (2022)

Deviation from true value due to truncation of HPE in the worst convergent case:

Ashikawa+, arXiv:2407.09156 (2024)

- Nt=4: $\kappa_c = 0.0603(4)$ [Kiyohara+ ('21)]
 - => LO may have at worst 10% error in the eff. action, NLO is \geq 98% accurate.
- Nt=6: $\kappa_c = 0.08769(7)(^{+11}_{-0})$ [Ashikawa+ ('24)], 0.0877(9) [Cuteri+ ('22)]
 - NLO is \geq 93% accurate, NNLO is \geq 97% accurate.

Nt=8: $\kappa_c = 0.09024(46)$ [Sugawara+ ('24)], 0.1135(8) [Cuteri+ ('22)] => NNLO for >95%

Simulation up to NLO exactly

- Simulation cost << f-QCD simulations</p>
- Overlap problem of reweighting resolved by the LO in configuration generation
- => 1st order transition on large lattices

Kiyohara+ (2021)

5/12

Effective incorporation of higher orders

Basic observation:

strong linear correlation among different order terms of the HPE.

Scatter plot of n-th order Polyakov-loop type terms of HPE vs LO Polyakov-loop, observed on an Nt=6lattice near the CP.

Ashikawa,+ (2024)

We may approximate measured from the slopes **n-th order term** $\approx C_n \times$ **low-order term** Wilson-loop type terms show weaker but similar correlation.

> eff.[LO] method

Exact up to LO.

Effctively incorporate NLO and higher orders by shifting the couplings in S_{G+LO} .

Wakabayashi, Ejiri, KK, Kitazawa, PTEP 2022, 033B05 (2022)

> eff.[NLO] method

Exact up to NLO.

Effectively incorporate NNLO and highers by shifting the NLO couplings in $S_{\rm NLO}$.

Better because NLO is exact and correlation is stronger with smaller order-differences.

Ashikawa, Kitazawa, Ejiri, KK, arXiv:2407.09156 (2024)

Test of eff. methods using final observables

Results of the phase diagram at *Nt* **= 6** (discussed later)

- Transition line and CP with eff.[LO/NLO] shift from NLO
- \Rightarrow NNLO and highers important at Nt \geq 6.
 - eff.[LO] \approx eff.[NLO]
- \Rightarrow effective incorporation of NLO works

Ashikawa, Kitazawa, Ejiri, KK, arXiv:2407.09156 (2024)

We adopt $(n_W, n_L) = (10, 14)$ at Nt=6.

Study at $N_t = 4$

Study at $N_t = 6$

Ashikawa, Kitazawa, Ejiri, KK, arXiv:2407.09156 (2024)

Nt=6, Ns/Nt = LT = 6, 7, 8, 9, 10, 12, 15, 18 (Ns = 36–108)

★ Violation of FSS larger on finer lattice => larger LT (≥ 10) required ★ $\nu = 0.627(19)(5), b_4 = 1.6297(84)(6)$ with LT = 12–18 (cf.) Z(2) values: 0.630, 1.604

Study at $N_t = 6$

Ashikawa, Kitazawa, Ejiri, KK, arXiv:2407.09156 (2024)

11/12

Study at $N_t = 8$ (in preparation)

Sugawara+, in preparation

Nt=8, Ns/Nt = LT = 6, 8, 10, 12, 15 (Ns = 48 - 120)

consistent with Z(2) within 1σ

 $\kappa_c = 0.09024(46) \text{ for } N_F = 2 \text{ with eff.[LO] up to 20th order}$ [cf. 1.1135(8) Cuteri + ('22) fQCD, LT = 4-6(7,10)]

Conclusions

We determined CP in heavy-quark QCD by the Binder cumulant:

\Rightarrow Large spatial lattices with LT = Ns/Nt \gtrsim 10 required.

Where the second sec

- \therefore Nt = 4: $\kappa_c = 0.0603(4)$
- \therefore Nt = 6: $\kappa_c = 0.08769(7)(^{+11}_{-0})$ for N_F=2 using LT=10–18
- for $N_F=2$ using LT=9-12
- \therefore Nt = 8: $\kappa_c = 0.09024(46)$ for $N_F=2$ using LT=10-15
- $\propto N_F$ -dep. known analytically in HPE => easy to translate them to 2+1 flavors etc.

\Rightarrow CP in physical units using $m_{\rm PS}$ at T=0. [Cuteri+ ('21), Itagaki+('19) unpublished]

- \therefore Nt = 4: $m_{PS}^{(CP)}/T_c = 16.30(3)$ for $N_F=2$ using LT=9-12 \therefore Nt = 6: $m_{PS}^{(CP)}/T_c = 18.07(2)(^{+0}_{-2})$ for N_F=2 using LT=10–18
- \therefore Nt = 8: $m_{PS}^{(CP)}/T_c = 17.2(2)$ for $N_F=2$ using LT=10-15
- $x \sim Nt$ -dep. (a-dep.) looks small in this combination.
- The method should work at least up to $Nt \sim 10$. Application to finite-density QCD.

We miss

Yusuke Taniguchi 07.04.1968–22.07.2022

who was joining the German-Japanese Seminars since 2010, and was the main coordinator of the Seminars in the Japanese side since 2018 until he went into a coma in Nov. 2019.
His application of the Seminar for FY 2020 at Mainz was successful, but the Seminar was postponed and finally withdrawn due to the COVIV-19 pandemic.

brief history of YT

1997 PhD, Kyoto University.
1997-1999 JSPS fellow (Univ. Tsukuba)
1999-2008 Assistant, Univ. Tsukuba
2003-2004 JSPS Visiting Scientist (CERN)
2008-2018 Assistant Professor (Lecturer), Univ. Tsukuba

- 2010 Japanese-German Seminar, Mishima, Japan
- 2013 German-Japanese Seminar, Regensburg, Germany
- 2016 Japanese-German Seminar, Niigata, Japan
- 2018- Associate Professor, Univ. Tsukuba

Nov. 2010, J-G Seminar Mishima

PREMI

