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CP in heavy-quark QCD

A powerful way to determine CP:
Binder cumulant analysis based on the expected Z(2) FSS,

assuming (approx.) dominance of the leading sing. in  lim.L → ∞
Large spatial lattices & high statistics 

         to identify the leading FSS clearly. 
Reweighting to vary coupling parameters continuously 

         as required by Binder cumulant analyses.

*

Finite-T QCD transition is important in 
understanding various phenomena:  the early 
evolution of the Universe, neutron stars, 
quark matter in relativistic heavy-ion collisions, 
etc.
<= Columbia plot summarizing the nature of 
the QCD trans. as function of 's.

We focus on the CP near the upper-right 
corner (hq-QCD).

mq

2/12



Lattice setup 
Lattice action:  plaquette gauge + standard Wilson quarks

Wilson quark kernel:

Quark contribution to the effective action:

each term given by closed loops of  with B κ [loop length]

NLO:
 bent Polyakov loops Ωi

κ6 κNt+2

HPE ≈  expansion

HPE worsens with   ( )    =>   higher orders required.

1/(amq)
a → 0 Nt → ∞

Hopping Parameter Expansion

LO:
Polyakov loop Ω

κ4 κNt

B
B

B
B

Wilson loops              Polyakov-loop type loops

where κ = 1/(2amq + 8)
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Convergence of HPE
Wakabayashi, Ejiri, KK, Kitazawa,  PTEP 2022, 033B05 (2022)

Nt=4:   [Kiyohara+ ('21)] 
      =>    LO may have at worst 10% error in the eff. action,  NLO is ≥98% accurate.

Nt=6:   [Ashikawa+ ('24)],   [Cuteri+ ('22)] 
      =>    NLO is ≥93% accurate,  NNLO is ≥97% accurate.

Nt=8:   [Sugawara+ ('24)],  [Cuteri+ ('22)]  => NNLO for >95%

κc = 0.0603(4)

κc = 0.08769(7)(+11
−0 ) 0.0877(9)

κc = 0.09024(46) 0.1135(8)

Deviation from true value due to truncation of HPE  in the worst convergent case:

For studies around CP:

Polyakov-loop type contribution to the eff. action:           (Wilson-loop type contribution similar.)

up to LO

NLO
up to 

NLO
up to 

up to 
NNLOκc

κc

exact

up to LO

Ashikawa+, arXiv:2407.09156 (2024)
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Simulation up to NLO exactly

NLO incorporated exactly 
by reweighting

 term can be incorporated in PHB+OR algorithm à la pure YM simulations

Kiyohara, Kitazawa, Ejiri, KK PRD 104, 1144509 (2021)

λ∑
x

Ω(x)

Simulation cost  <<  f-QCD simulations

Overlap problem of reweighting resolved 
by the LO in configuration generation

=>  1st order transition on large lattices

Kiyohara+ (2021)

403x4

LO incorporated in the 
configuration generation]]

β → β* = β + 48Nf κ4
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Effective incorporation of higher orders

Wakabayashi, Ejiri, KK, Kitazawa,  PTEP 2022, 033B05 (2022)

Scatter plot of n-th order 
Polyakov-loop type terms of 
HPE vs LO Polyakov-loop, 
obser ved on an Nt=6 
lattice near the CP.

Ashikawa,+ (2024)

Basic observation: 
strong linear correlation among different order terms of the HPE.

We may approximate
 n-th order term  low-order term

Wilson-loop type terms show weaker but similar correlation.
≈ Cn ×

eff.[LO] method

eff.[NLO] method

Exact up to LO.
Effctively incorporate NLO and higher orders 
by shifting the couplings in .SG+LO

Exact up to NLO.
Effectively incorporate NNLO and highers 
by shifting the NLO couplings in .
Better because NLO is exact and correlation is stronger with 
smaller order-differences.

SNLO

Ashikawa, Kitazawa, Ejiri, KK, arXiv:2407.09156 (2024)

measured from the slopes 
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Test of eff. methods using final observables
Results of the phase diagram at Nt = 6 (discussed later)

Ashikawa, Kitazawa, Ejiri, KK, arXiv:2407.09156 (2024)

Transition line and CP with eff.[LO/NLO] 
shift from NLO  
  NNLO and highers important at Nt≥6.⇒

Dependence on the truncation 
order in eff.[LO/NLO]
 convergent if  

for Nt=6.
We adopt  at Nt=6.

⇒ (nW, nL) ≥ (10,14)

(nW, nL) = (10,14)

(nW, nL) = (10,14)

1st 
 order

CP

eff.[LO] ≈ eff.[NLO]  
  effective incorporation of NLO works⇒
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Study at Nt = 4
Kiyohara, Kitazawa, Ejiri, KK,  PRD 104 (2021)

Results at Nt = 4 with HPE up to NLO

large lattices with Ns/Nt = LT ≥ 9 required for Z(2) FSS
  using Ns/Nt = 9–12

consistent with the Z(2) values 0.630, 1.604 within

(2) [ ] for Nt=4, Nf=2 

ν = 0.614(48)(3), b4 = 1.630(24)(2)
1σ

λc = 0.00503(14) κc = 0.0603(4)

Z(2) FSS fits

Binder cumulant of the Polyakov loop    along the transition lineBΩ
4 = ⟨Ω4

R⟩c

⟨Ω2R⟩2c
+ 3

   for  Nt=4λ = 48Nf Nt κ4
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Study at Nt = 6

Nt=6,  Ns/Nt = LT = 6, 7, 8, 9, 10, 12, 15, 18  (Ns = 36–108) 

                                                                          for  Nt=6BΩ
4 λ = 128Nf Nt κ6

  with LT = 12–18
(cf.) Z(2) values:  0.630,  1.604

ν = 0.627(19)(5), b4 = 1.6297(84)(6)

Ashikawa, Kitazawa, Ejiri, KK, arXiv:2407.09156 (2024)

Violation of FSS larger on finer lattice  =>  larger LT (≥ 10) required

9/12



Study at Nt = 6
Ashikawa, Kitazawa, Ejiri, KK, arXiv:2407.09156 (2024)

B4 = (b4 + c(λ − λc)(LT )−1/ν)(1 + d(LT )Y)

  
[cf. Z(2) values:  0.630,    1.604]

ν = 0.627(19)(5), b4 = 1.6297(84)(6)

fits acceptable when LT ≥ 10.
note:  w/ mixing, the crossing pt. moves with LT.

 
LT=12–18, eff.[NLO], NF=2
[cf.  0.0877(9)  Cuteri+ ('21) fQCD, LT=4–7]

κc = 0.08769(7)(+11
−0 )

B4 = (b4 + c(λ − λc)(LT )−1/ν)
FSS fit using standard ansatz for mag. op.:

FSS fit taking mixing with energy-like op.:

Y = – 0.896 for Z(2)
Full 6 parameter fits were unstable
  =>   fit fixing  to Z(2) valuesb4, ν, Y

9

TABLE III. Results of the four-parameter fit based on
Eq. (38) for various combinations of LT . The first and sec-
ond errors are the statistical and systematic ones, respectively,
where the latter is estimated from the choices of � values. The
last column shows �2/dof of each fit.

LT b4 �c ⇥ 104 ⌫ �2/dof

18, 15, 12 1.6297(84)(6) 7.048(52)(8) 0.627(19)(5) 0.40

15, 12, 10 1.6294(81)(4) 7.046(68)(4) 0.626(17)(1) 0.35

18� 10 1.6295(55)(5) 7.047(38)(3) 0.621(11)(3) 0.23

18� 9 1.6331(41)(4) 7.061(32)(7) 0.616(87)(2) 0.47

18� 8 1.6418(32)(4) 7.120(27)(8) 0.616(87)(2) 3.95

TABLE IV. Results of the three-parameter fit based on
Eq. (40) for various combinations of LT .

LT �c ⇥ 104 �2/dof

18, 15, 12 6.986(32)(9) 0.51

15, 12, 10 6.973(42)(5) 0.83

18� 10 6.984(25)(8) 1.07

18� 9 6.998(21)(5) 4.23

18� 8 7.035(19)(3) 36.4

points to be fitted, we use B4 at two values of �, �1 and
�2, for various combinations of LT , where the values of
�1 and �2 are varied within the range 0.00067  �1 
0.00069 and 0.00071  �2  0.00073 to estimate the
systematic uncertainty associated to their choices. The
values of B4 at di↵erent �’s are correlated in our analysis
because their measurements are performed on the same
gauge configurations through reweighting. We take the
correlations into account by the correlated fits.

The results of the fits for b4,�c, ⌫ are summarized
in Table III for various combinations of LT , where
(�1,�2) = (0.00069, 0.00071) is employed for the cen-
tral values. The first and second errors show the sta-
tistical and systematic errors, where the latter is esti-
mated from the variations of (�1,�2), which is well sup-
pressed compared to the statistical error. The results for
LT = (18, 15, 12) and LT = (15, 12, 10) are shown in the
lower panel of Fig. 7 by the circle and square symbols
with the double errors.

The result in Table III shows that the value of the
critical exponent ⌫ is consistent with Eq. (39). However,
b4 has more than 2� deviation from the Z(2) value in
Eq. (39) even for the fit with LT � 12.

To investigate the possible mixing e↵ects of energy-like
observable to this result, we next perform the fits based
on Eq. (40). However, we found that the six-parameter
fit, where b4, c, �c, ⌫, d, Y are the fitting parameters, is
unstable with many local minima of �2. We thus fixed
b4, ⌫, Y to the Z(2) values in Eqs. (39) and (41) and
performed the three parameter fit to determine c, �c,
and d. The results for �c for various combinations of LT
are shown in Table IV, where the meaning of errors is
the same as Table III while the central value is set to

(�1,�2) = (0.00067, 0.00071). The table shows that the
fit works well with reasonable �

2
/dof when LT � 10.

The results for LT = (18, 15, 12) and LT = (15, 12, 10)
are indicated in the lower panel of Fig. 7 by the diamond
and triangle symbols at B4 = b4 with horizontal error
bars. The result for LT = (18, 15, 12) is also shown in
Fig. 6 by the circle symbol.

D. Violation of the FSS

Tables III and IV show that �2
/dof becomes unaccept-

ably large when the numerical results for smaller LT are
included. This result indicates that the violation of the
FSS shows up for LT  8 in our data, presumably be-
cause the non-singular contribution to the free energy is
not well suppressed there. Compared to Ref. [31], the
non-singular contribution seems to be amplified at the
same LT on the finer lattice.

To understand the origin of the violation of the FSS
at small LT , we show in Fig. 8 the distribution of ⌦̂ on
the complex plane at (�,�) = (5.8817, 0.0007), the pa-
rameter close to the CP, by the color-contour map for
LT = 6, 10, 15. From the left panel, one finds that the
distribution has a triangular shape at LT = 6, with dis-
tributions extending toward large |Im⌦̂| around Re⌦̂ = 0.
This behavior is clearly attributed to the remnant of the
Z(3) center symmetry at � = 0. As a result, the two
peaks of the distribution are clearly asymmetric.

In the Z(2) universality class, on the other hand, the
scaling function has the rigorous Z(2) symmetry; the
magnetization is symmetric against the change of the sign
in the Ising model. However, the breaking of this symme-
try is manifest in the left panel of Fig. 8, indicating the
violation of the scaling behavior at LT = 6. While the
distribution approaches a symmetric one as LT becomes
larger, such violation is visible even on the right panel
for LT = 15.

The stronger violation of the FSS at Nt = 6 than
Nt = 4 may be related to the strength of the first-order
phase transition in SU(3) Yang-Mills (YM) theory corre-
sponding to � = 0. It is known that the latent heat in
SU(3) YM theory is large at Nt = 4 owing to the lat-
tice artifact [41, 42]. The large latent heat implies that
a stronger external field is necessary to make the transi-
tion crossover. As a result, the CP is located at larger
� at Nt = 4, where the influence of the original Z(3)
symmetry at � = 0 is more suppressed.

E. Location of CP: Nf dependence

So far, we have discussed the numerical results for
the case of Nf = 2. The generalization of these re-
sults to other Nf and non-degenerate cases is straight-
forward as the Nf -dependence of the HPE is explicitly
known. In Table V, we summarize the location of the
CP for Nf = 1, 2, 3. The fitting result using Eq. (40)

10/12



Study at Nt = 8 (in preparation)

Nt=8,  Ns/Nt = LT = 6, 8, 10, 12, 15  (Ns = 48 – 120)

                                                                           for  Nt=8BΩ
4 λ = 384Nf Nt κ8

,    [ ] with LT = 10–15

 fixing  [ ] with LT = 10–15 

consistent with Z(2) within 

  for NF=2 with eff.[LO] up to 20th order

      [cf.  1.1135(8) Cuteri+ ('22) fQCD, LT=4-6(7,10)]

ν = 0.72(27) b4 = 1.638(28) χ2/dof = 1.474
b4 = 1.637(24) ν = 0.630 χ2/dof = 1.343

1σ
κc = 0.09024(46)

Sugawara+, in preparation
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Conclusions

Large spatial lattices with LT = Ns/Nt  10 required.
HPE + eff. method to incorporate high orders.

Nt = 4:    for NF=2 using LT=9–12
Nt = 6:     for NF=2 using LT=10–18
Nt = 8:    for NF=2 using LT=10–15
NF-dep. known analytically in HPE  =>  easy to translate them to 2+1 flavors etc.

>
≈

κc = 0.0603(4)
κc = 0.08769(7)(+11

−0 )
κc = 0.09024(46)

We determined CP in heavy-quark QCD by the Binder cumulant:

CP in physical units  using  at T=0. [Cuteri+ ('21),  Itagaki+('19) unpublished]

Nt = 4:    for NF=2 using LT=9–12

Nt = 6:   for NF=2 using LT=10–18

Nt = 8:    for NF=2 using LT=10–15

Nt-dep. (a-dep.) looks small in this combination.

The method should work at least up to Nt ~ 10. 
Application to finite-density QCD.         

mPS
m (CP)

PS /Tc = 16.30(3)
m (CP)

PS /Tc = 18.07(2)(+0
−2)

m (CP)
PS /Tc = 17.2(2)
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We miss 

Yusuke Taniguchi 
07.04.1968—22.07.2022 

who was joining the German-Japanese Seminars 
since 2010, and was the main coordinator of the 
Seminars in the Japanese side since 2018 until 

he went into a coma in Nov. 2019.    
His application of the Seminar for FY 2020 at 

Mainz was successful, but the Seminar was 
postponed and finally withdrawn due to the 

COVIV-19 pandemic.

15.03.2019, Fukuoka, Japan
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