Phase structure of finite temperature-density QCD in heavy quark regime by hopping parameter expansion

Shinji Ejiri (Niigata University)

Collaborators:

Kazuyuki Kanaya (Univ. Tsukuba) Masakiyo Kitazawa (YITP, Kyoto Univ.) Masanari Koiida (Niigata Univ.)

German-Japanese seminar 2024, Mainz, 2024/9/25-27

QCD phase diagram in the heavy quark region

- Applications of the effective heavy quark theory based on the hopping parameter expansion.
- Boundary of first-order transition in the heavy quark region.
 - First-order region: narrower as μ
- Singularities in the complex μ plane: Lee-Yang zeros $Z(\mu) = 0$
- Appearance of first-order phase transitions in the heavy and dense region.

Effective theory based on the hopping parameter expansion

- We expand the quark determinant in terms of the hopping parameter κ .
- The terms that wind around the periodic boundary in the time direction are important. $L(N_t, n) = \sum_m L_m(N_t, n) = \sum_m (L_m^+(N_t, n) + L_m^-(N_t, n))$
- Higher order expansion terms $L(N_t, n)$ are very strongly correlated with the leading term: Polyakov loop Ω .

$$L(N_t, n) \approx L^0(N_t, n)c_n \operatorname{Re}\Omega, \operatorname{Arg} L_1^+(N_t, n) \approx \operatorname{Arg} \Omega^{(0.04)}$$

- $L_1(N_t, n)$ is dominant: $L_1(N_t, n) \approx L(N_t, n)$.
- Effective action in the heavy quark region

$$S_{\text{eff}} = -6N_{\text{site}}\beta^*P - \frac{N_s^3\lambda}{2} \left(e^{\frac{\mu}{T}}\Omega + e^{-\frac{\mu}{T}}\Omega^*\right)$$
$$\lambda = N_t \sum_{f=1}^{N_f} \sum_{n=N_t}^{n_{\text{max}}} L^0(N_t, n) c_n \kappa_f^n$$

- Even if the number of expansion terms increases significantly, the effects of higher-order terms can be incorporated.
- Since the calculation cost can be dramatically reduced, calculations with high accuracy are possible.

Boundary of first-order transition in the heavy quark region

Effective action in the heavy quark region

$$S_{\text{eff}} = -6N_{\text{site}}\beta^*P - \frac{N_s^3\lambda}{2}\left(e^{\frac{\mu}{T}}\Omega + e^{-\frac{\mu}{T}}\Omega^*\right), \qquad \lambda = N_t\sum_{f=1}^{N_f}\sum_{n=N_t}^{n_{\text{max}}}L^0(N_t, n) c_n\kappa_f^n$$

Ignoring the effect of complex phase,

$$S_{\rm eff} \approx -6N_{\rm site}\beta^*P - N_s^3\lambda\cosh\frac{\mu}{T}{\rm Re}\Omega$$

• Once the critical point λ_c at $\mu = 0$ for $N_f = 2$ is determined, the critical line for $N_f = 2 + 1^{-0.1}$ can be given by solving

$$\lambda_c = N_t \cosh \frac{\mu}{T} \sum_{f=1}^{N_f} \sum_{n=N_t}^{n_{\text{max}}} L^0(N_t, n) c_n \kappa_f^n$$

Adding the effect of complex phase,

- Sign problem is mild near the critical point.
 - Effect of the complex phase: very small 0.02
- As increasing density, the first-order transition region becomes narrower.

Lee-Yang zeros in the complex μ plane near the critical mass

$$Z(\beta,\lambda,\mu) = \int DU \ e^{-S_{\text{eff}}} \qquad (\mu = \mu_R + i\mu_I)$$

$$S_{\text{eff}} = -6N_{\text{site}}\beta^*P - \frac{N_s^3\lambda}{2} \left(e^{\frac{\mu}{T}}\Omega + e^{-\frac{\mu}{T}}\Omega^*\right)$$

$$= -6N_{\text{site}}\beta^*P - N_s^3\lambda \left[\cosh\frac{\mu_R}{T} \left(\cos\frac{\mu_I}{T} \ \Omega_R - \sin\frac{\mu_I}{T} \ \Omega_I\right) + i\sinh\frac{\mu_R}{T} \left(\sin\frac{\mu_I}{T} \ \Omega_R + \cos\frac{\mu_I}{T} \ \Omega_I\right)\right]$$

- Indicator of Lee-Yang zero: $\frac{|Z(\beta,\lambda,\mu)|}{Z_{pq}(\beta,\lambda,\mu)}$ (Z_{pq}: Ignoring the imaginary part of S_{eff})
- Reweighting method $N_t = 6, N_s = 90, \beta^* = 5.8905, \lambda = 0.0010$ (simulation point: $\lambda_0 = 0.0012$)

Lee-Yang zeros in the complex μ plane near the critical mass

$$Z(\beta,\lambda,\mu) = \int DU \ e^{-S_{\text{eff}}} \qquad (\mu = \mu_R + i\mu_I)$$

$$S_{\text{eff}} = -6N_{\text{site}}\beta^*P - \frac{N_s^3\lambda}{2} \left(e^{\frac{\mu}{T}}\Omega + e^{-\frac{\mu}{T}}\Omega^*\right)$$

$$= -6N_{\text{site}}\beta^*P - N_s^3\lambda \left[\cosh\frac{\mu_R}{T} \left(\cos\frac{\mu_I}{T} \ \Omega_R - \sin\frac{\mu_I}{T} \ \Omega_I\right) + i\sinh\frac{\mu_R}{T} \left(\sin\frac{\mu_I}{T} \ \Omega_R + \cos\frac{\mu_I}{T} \ \Omega_I\right)\right]$$

- Indicator of Lee-Yang zero: $\frac{|Z(\beta,\lambda,\mu)|}{Z_{pq}(\beta,\lambda,\mu)}$ (Z_{pq}: Ignoring the imaginary part of S_{eff})
- Reweighting method $N_t = 6, N_s = 90, \beta^* = 5.8905, \lambda = 0.0010$ (simulation point: $\lambda_0 = 0.0012$)

The transition point on the real axis is smaller than μ_R^{LYZ} .

Lee-Yang zeros in the complex µ plane when Ns is small

$$Z(\beta,\lambda,\mu) = \int DU \ e^{-S_{\text{eff}}} \qquad (\mu = \mu_R + i\mu_I)$$

$$S_{\text{eff}} = -6N_{\text{site}}\beta^*P - \frac{N_s^3\lambda}{2} \left(e^{\frac{\mu}{T}}\Omega + e^{-\frac{\mu}{T}}\Omega^*\right)$$

$$= -6N_{\text{site}}\beta^*P - N_s^3\lambda \left[\cosh\frac{\mu_R}{T} \left(\cos\frac{\mu_I}{T} \ \Omega_R - \sin\frac{\mu_I}{T} \ \Omega_I\right) + i\sinh\frac{\mu_R}{T} \left(\sin\frac{\mu_I}{T} \ \Omega_R + \cos\frac{\mu_I}{T} \ \Omega_I\right)\right]$$

- Indicator of Lee-Yang zero: $\frac{|Z(\beta,\lambda,\mu)|}{Z_{pq}(\beta,\lambda,\mu)}$ (Z_{pq}: Ignoring the imaginary part of S_{eff})
- Reweighting method $N_t = 6, N_s = 60, \beta^* = 5.8911, \lambda = 0.0010$ (simulation point: $\lambda_0 = 0.0010$)

• Action:
$$S_{\rm eff} = -6N_{\rm site}\beta P - N_s^3\lambda\Omega_{\rm R}$$
 $(\lambda = \lambda_R + i\lambda_I)$

- Indicator of L-Y zero: $Z_{nor}(\beta, \lambda) = \frac{|Z(\beta, \lambda)|}{Z(\beta, \lambda_R)}$
- Conditions at LYZ: $\underline{\lambda}_R = (\text{const}), \ N_s^3 \Delta \Omega \lambda_I = (2n+1)\pi$
- At the critical point, $\Delta \Omega \sim N_s^{-3+y_h}$, $\lambda_I = \frac{(2n+1)\pi}{N_s^3 \Delta \Omega} \sim N_s^{-y_h}$ ising universality class : $y_h = 2.482$

7010012558905x4256.txt

ReΩ

Simulation near the critical point $\beta = 5.8905$ $\lambda = 0.0012$ $N_t = 6$ $N_s = 36 - 90$ 10

Boundaries of first-order transitions in QCD phase diagram

- We expect that the first-order phase transition in the light mass region expands with increasing density.
- The first-order phase transition region may expand into the heavy quark region.

In the heavy-dense effective theory $(\kappa \to 0, e^{\mu/T} \to \infty, e^{-\mu/T} \to 0)$

- Parameter: $C = \kappa^{N_t} e^{\mu/T}$. Symmetry under $C \to 1/C$ and $\Omega \to \Omega^*$
- In the heavy limit, [small μ] 1st order \rightarrow crossover \rightarrow 1st order [large μ]

Finite density Effect

$$S_{\rm eff} = -6N_{\rm site}\beta^*P - N_s^3\lambda\left(\cosh\frac{\mu}{T}\ \Omega_{\rm R} + i\sinh\frac{\mu}{T}\ \Omega_{\rm I}\right) \qquad (\Omega = \Omega_{\rm R} + i\Omega_{\rm I})$$

• Partition function:

$$Z = \int DU \ e^{-S} = \int \underline{W(P, \Omega_{\rm R})} \ e^{6N_{\rm S}^3N_t\beta P} \ e^{N_{\rm S}^3\lambda\cosh\frac{\mu}{T}\Omega_{\rm R}} \left\langle \cos\left(N_{\rm S}^3\lambda\sinh\frac{\mu}{T}\Omega_{\rm I}\right)\right\rangle_{P,\Omega_{\rm R}} \ dPd\Omega_{\rm R}$$
$$= F(P,\Omega_{\rm R})$$

0.25

0.2

0.1

0.05

 $\Omega_R^{0.15}$

2.000

-0.200 -0.150 -0.100 -0.070

-0.03 -0.02 -0.01

0.00

-0.00

-0.020

- $W(P, \Omega_R)$ is the provability distribution function in terms of (P, Ω_R) .
- For the case of $\mu = 0$, when configurations are generated at $\underline{\beta}$ and $\underline{\lambda}$, the following equations are satisfied at (P, Ω_R) where the configuration generation probability is maximized.

$$\frac{\partial F(P,\Omega_{\rm R})}{\partial P} = 6N_{\rm S}^3 N_t \beta + \frac{\partial \ln W(P,\Omega_{\rm R})}{\partial P} = 0$$
$$\frac{\partial F(P,\Omega_{\rm R})}{\partial \Omega_{\rm R}} = N_{\rm S}^3 \lambda + \frac{\partial \ln W(P,\Omega_{\rm R})}{\partial \Omega_{\rm R}} = 0$$

- The peak position of $F(P, \Omega_R)$: $\approx \langle P \rangle, \langle \Omega_R \rangle$.
- Right figure: $\langle P \rangle$, $\langle \Omega_R \rangle$ as functions of β , λ .

Effect of the complex phase at finite μ

• Avoiding the sign problem, cumulant expansion:

$$\ln\left\langle\cos\left(N_{s}^{3}\lambda\sinh\frac{\mu}{T}\Omega_{I}\right)\right\rangle_{P,\Omega_{R}} = -\frac{1}{2}\left\langle\left(N_{s}^{3}\lambda\sinh\frac{\mu}{T}\Omega_{I}\right)^{2}\right\rangle_{c} + \frac{1}{4!}\left\langle\left(N_{s}^{3}\lambda\sinh\frac{\mu}{T}\Omega_{I}\right)^{4}\right\rangle_{c} - \frac{1}{6!}\left\langle\left(N_{s}^{3}\lambda\sinh\frac{\mu}{T}\Omega_{I}\right)^{6}\right\rangle_{c} + \cdots \\ \left\langle\theta^{2}\right\rangle_{c} = \left\langle\theta^{2}\right\rangle, \qquad \left\langle\theta^{4}\right\rangle_{c} = \left\langle\theta^{4}\right\rangle - 3\left\langle\theta^{2}\right\rangle^{2}, \qquad \left\langle\theta^{6}\right\rangle_{c} = \left\langle\theta^{6}\right\rangle - 15\left\langle\theta^{4}\right\rangle\left\langle\theta^{2}\right\rangle + 30\left\langle\theta^{2}\right\rangle^{3}, \cdots$$

- We approximate $\ln \left\langle \cos \left(N_s^3 \lambda \sinh \frac{\mu}{T} \Omega_I \right) \right\rangle_{P,\Omega_R} \approx -\frac{1}{2} \left(N_s^3 \lambda \sinh \frac{\mu}{T} \right)^2 \left\langle \Omega_I^2 \right\rangle$ for qualitative estimation. (Gaussian approximation)
- If we write (β, λ) that are generated by configuration generation at $\mu = 0$ to be $(\langle P \rangle, \langle \Omega_R \rangle)$ as (β_0, λ_0) , then (β, λ) that are $(\langle P \rangle, \langle \Omega_R \rangle)$ at finite μ are

$$\beta = \beta_0 + \frac{N_s^3}{12N_t} \left(\lambda \sinh\frac{\mu}{T}\right)^2 \frac{\partial \langle \Omega_I^2 \rangle_c}{\partial P}, \qquad \lambda \cosh\frac{\mu}{T} = \lambda_0 + \frac{N_s^3}{2} \left(\lambda \sinh\frac{\mu}{T}\right)^2 \frac{\partial \langle \Omega_I^2 \rangle_c}{\partial \Omega_R}$$
¹³

Fluctuation of the complex phase

14

Phase quenched QCD (Ignore complex phase) (isospin μ)

- If we ignore the complex phase, $S_{eff} = -6N_{site}\beta^*P N_s^3\lambda\left(\cosh\frac{\mu}{T}\Omega_R + i\sinh\frac{\mu}{T}\Omega_F\right)$
- Simply replace λ at $\mu = 0$ with $\lambda \cosh \frac{\mu}{\tau}$ to investigate phase quenched QCD.
- Increasing λ means increasing κ , so increasing λ makes the approximation of the hopping parameter expansion worse.
- Therefore, we fix λ at a small value and increase μ .

Plaquette in phase quenched QCD (isospin QCD)

- As $\cosh(\mu/T)$ increases, the change in plaquette becomes steeper.
- This behavior is consistent with the existence of a pion-condensed phase at large μ.
- The strong coupling expansion of $\langle P \rangle$ does not depend on $\lambda \cosh(\mu/T)$.
- Confinement phase: $\langle P \rangle$ is consistent with the strong coupling expansion.
- The $\lambda \cosh(\mu/T)$ term forces the deconfinement phase. Lattice size: $30^3 \times 6$

Polyakov loop in phase quenched QCD (isospin QCD)

- First order phase transition at $\lambda = 0$
- Regarding the Polyakov loop, if we look closely at the changing part, the change becomes steeper as μ increases.
- $\langle \Omega_R \rangle$ changes almost perpendicular to the horizontal axis

Effect of the complex phase

• We estimate the change in β by the complex phase.

Estimation of β shift by the complex phase

4.8

5.2

β

5

5.4

5.6

5.8 • A first-order phase transition is expected at large μ/T .

Summary

- Boundary of first-order transition in the heavy quark region
 - Sign problem is mild near the critical point.
 - As increasing density, the first-order transition region becomes narrower.
- Lee-Yang zeros in the complex μ plane are $Z(\mu)=0$
 - The distance from the real axis is larger than expected.
 - The transition point on the real axis is smaller than $\mu_R^{
 m LYZ}$.
 - If the volume is small, the LY zeros become indistinguishable from the R-W singularity.
- Appearance of first-order phase transitions in the heavy and dense region
 - First, we discussed the nature of the phase transition of phase-quenched finite-density QCD in the heavy quark region.
 - The first-order transition at zero density turns into a crossover as μ is increased, but, when we increase μ further, the change in the plaquette value near the crossover point becomes much steeper.
 - Then, we estimate the effect of the complex phase. The result suggests the appearance of a first-order phase transition region at very large μ .

Strong coupling limit (low temperature phase)

- Strong coupling expansion of $\left< \Omega_{\rm I}^2 \right>$ at $\lambda = 0$

$$\langle \Omega_{I}^{2} \rangle = \left(\left(\frac{\Omega - \Omega^{*}}{2i} \right)^{2} \right) \approx \frac{1}{2} \langle \Omega \Omega^{*} \rangle \approx \frac{1}{2N_{s}^{6}N_{c}^{2}} \sum_{x,y} \left(\operatorname{tr}(UU \cdots U)_{x} \operatorname{tr}(U^{\dagger}U^{\dagger} \cdots U^{\dagger})_{y} \right)$$

$$\approx \frac{N_{s}^{3}}{2N_{s}^{6}N_{c}^{2}} \left(\operatorname{tr}(UU \cdots U)_{x} \operatorname{tr}(U^{\dagger}U^{\dagger} \cdots U^{\dagger})_{x} \right) + \frac{6N_{s}^{3}}{2N_{s}^{6}N_{c}^{2}} \left(\operatorname{tr}(UU \cdots U)_{x} \operatorname{tr}(U^{\dagger}U^{\dagger} \cdots U^{\dagger})_{x+1} \right) + \cdots$$

$$\approx \frac{N_{s}^{3}}{2N_{s}^{6}N_{c}^{2}} + \frac{6N_{s}^{3}}{2N_{s}^{6}N_{c}^{2}} N_{c} \left(\frac{\beta}{2N_{c}^{2}} \right)^{N_{t}} = \frac{1}{2N_{s}^{3}N_{c}^{2}} + \frac{3}{N_{s}^{3}N_{c}} \left(\frac{\beta}{2N_{c}^{2}} \right)^{N_{t}}$$

$$= \frac{1}{2N_{s}^{3}N_{c}^{2}} + \frac{3}{2N_{s}^{3}N_{c}^{2}} + \frac{3}{N_{s}^{3}N_{c}} \left(\frac{\beta}{2N_{c}^{2}} \right)^{N_{t}}$$

$$= \frac{1}{2N_{s}^{3}N_{c}^{2}} + \frac{3}{2N_{s}^{3}N_{c}^{2}} + \frac{3}{N_{s}^{3}N_{c}} \left(\frac{\beta}{2N_{c}^{3}} \right)^{N_{t}}$$

$$= \frac{1}{2N_{s}^{3}N_{c}^{2}} + \frac{3}{2N_{s}^{3}N_{c}^{2}} + \frac{3}{N_{s}^{3}N_{c}} \left(\frac{\beta}{2N_{c}^{3}} \right)^{N_{t}}$$

$$= \frac{1}{2N_{s}^{3}N_{c}^{3}} + \frac{3}{2N_{s}^{3}N_{c}^{2}} + \frac{3}{N_{s}^{3}N_{c}} \left(\frac{\beta}{2N_{c}^{3}} \right)^{N_{t}}$$

$$= \frac{1}{2N_{s}^{3}N_{c}^{3}} + \frac{3}{2N_{s}^{3}N_{c}^{2}} + \frac{3}{N_{s}^{3}N_{c}} \left(\frac{\beta}{2N_{c}^{3}} \right)^{N_{t}}$$

$$= \frac{1}{2N_{s}^{3}N_{c}^{3}} + \frac{3}{2N_{s}^{3}N_{c}^{3}} \left(\frac{\beta}{2N_{c}^{3}} \right)^{N_{c}} + \frac{3}{2N_{c}^{3}} \left(\frac{\beta}{2N_{c}^{3}} \right)^{N_{c}} + \frac{$$

Roberge-Weiss singularity

- Z_3 center symmetry $U_{\text{center}} = \omega I$, $\omega = \{1, e^{\frac{2\pi i}{3}}, e^{\frac{4\pi i}{3}}\}$
- Gauge action and integral measure: invariant, Polyakov loop: $\langle \Omega \rangle \Rightarrow \omega \langle \Omega \rangle$
- Quark determinant: det $M(\kappa, \mu) \Rightarrow \det M\left(\kappa, \mu + \frac{2\pi i}{3}\right)$
 - For Full QCD, Z_3 center symmetry: broken. But, symmetric if one changes μ .
- Roberge-Weiss periodicity: $Z(\beta, \lambda^*, \mu) = Z\left(\beta, \lambda^*, \mu \frac{2\pi i}{3}\right) = Z\left(\beta, \lambda^*, \mu + \frac{2\pi i}{3}\right)$
- R-W singularity: branch cut line at $Im\mu = \pm \frac{\pi}{3}$ in the complex μ plane
- ex.) $\mu_R = 0$, for the case of heavy quark effective theory,

Lee-Yang zero and Histogram of $\Omega_R = Re\Omega$

- Indicator of Lee-Yang zero: $Z_{nor}(\beta, \lambda) = \frac{|Z(\beta, \lambda)|}{Z(\beta, \lambda_R)}$, $(\text{complex } \lambda = \lambda_R + i\lambda_I)$ $S_{\text{eff}} = -6N_{\text{site}}\beta P - N_s^3\lambda\Omega_R$ $Z_{nor}(\beta, \lambda) = \frac{1}{Z} \left| \int DU \ e^{-\text{Re}S} e^{iN_s^3\lambda_I\Omega_R} \right| = \left| \left\langle e^{iN_s^3\lambda_I\Omega_R} \right\rangle_{(\beta,\lambda_R)} \right| = \left| \int e^{iN_s^3\lambda_I\Omega_R} p_\Omega d\Omega_R \right|$ • $p_\Omega(\Omega_R)$: Histogram of Ω_R . Its Fourier transform is $Z_{nor}(N_s^3\lambda_I)$
- In the case of a strong first-order phase transition, Ejiri, Phys.Rev.D73, 054502(2006)
 - In the complex plane, they lie on a straight line perpendicular to the real axis.
 - $p_{\Omega}(\Omega_R)$ has two peaks and the distance between the peaks is $\Delta\Omega$.
 - If $N_s^3 \lambda_I \Delta \Omega \approx \pi + 2\pi n$, $(n = 0, 1, 2, \dots)$, then $Z(\beta, \lambda) = 0$.
- Scaling law near the critical point (spatial length: $L = N_s a$)
 - Scaling Function $f(tL^{y_t}, hL^{y_h})$ (temperature: $t = (T T_c)/T_c$, magnetic field: h)
 - Ω_R corresponds to magnetization. Near the critical point, $\Delta \Omega = 2(\Omega_R \langle \Omega_R \rangle) \sim L^{-3+y_h}$
 - Scaling law for the histogram of Ω_R : $p_{\Omega}(\Delta \Omega L^{3-y_h}; tL^{y_t}, hL^{y_h})$
 - Kiyohara et al., Phys.Rev.D104, 114509(2021)

- Scaling law for $Z_{nor}(\beta, \lambda)$
 - Conjugate variable of $\Omega_R L^{3-y_h}$ in the Fourier transform: $N_s^3 \lambda_I / L^{3-y_h} = \lambda_I L^{y_h} a^{-3}$
 - Temperature variable: $t \sim \lambda \lambda_c$, (h = 0). Z_{nor} is a function of $L^{y_h} \lambda_I$.
 - Lee-Yang zero behaves as $\lambda_I \sim L^{-\gamma_h}$ ²³

Finite volume scaling analysis of histogram $N_{t} = 4$ Kiyohara et al., Phys.Rev.D104, 114509(2021) Histogram of Polyakov loop at transition point $p_{\Omega}(\Omega_R)$ $LT = N_s/N_t$ Near the critical point **First-order transition** Crossover $\lambda = 0.0030$ $\lambda = 0.0070$ $\lambda = 0.0050$ 15 15 LT = 12LT = 12LT = 1220 LT = 10LT = 10LT = 10LT = 9LT = 9LT = 915 LT = 8LT = 8LT = 810 10 $p\left(\Omega_{\mathrm{R}} ight)$ LT = 6LT = 6LT = 610 5 5 5 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 $\Omega_{\rm R}$ $\Omega_{\rm R}$ $\Omega_{\rm R}$ Histogram of $-\log p_{\Omega}(\Omega_R)$ at the critical point Peak Gap $\Delta\Omega$ vs $\lambda - \lambda_c$ $(\Omega_{\rm R} - \langle \Omega_{\rm R} \rangle)(LT)^{3-y_h}$

Ising universality class: $y_h = 2.482$, $y_t = 1/\nu = 1/0.630$

Temperature variable: decreases the gap between the two peaks.

$$tL^{y_t} \sim (\lambda - \lambda_c)(LT)^{y_t}$$

At the phase transition point, the magnetic field variable is h=0. (Changing the height difference between the two peaks)²⁴