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QCD phase diagram in the heavy quark region

• Applications of the effective heavy quark theory based on the hopping 
parameter expansion.

• Boundary of first-order transition in the heavy quark region. 

• First-order region: narrower as 𝜇

• Singularities in the complex 𝜇 plane: Lee-Yang zeros  𝑍 𝜇 = 0

• Appearance of first-order phase transitions in the heavy and dense region.
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Effective theory based on the hopping parameter expansion
• We expand the quark determinant in terms of the hopping parameter 𝜅.

• The terms that wind around the periodic boundary in the time direction 
are important.

• Higher order expansion terms 𝐿 𝑁𝑡, 𝑛 are very strongly correlated with 

the leading term: Polyakov loop Ω.

• 𝐿1 𝑁𝑡, 𝑛 is dominant: 

• Effective action in the heavy quark region

𝜆 = 𝑁𝑡

f=1

𝑁f



𝑛=𝑁𝑡

𝑛max

ሻ𝐿0(𝑁𝑡 , 𝑛 𝑐𝑛𝜅f
𝑛

𝐿 𝑁𝑡, 𝑛 ≈ 𝐿0 𝑁𝑡, 𝑛 𝑐𝑛 ReΩ,

𝑆eff = −6𝑁site𝛽
∗𝑃 −

𝑁𝑠
3𝜆

2
e
𝜇
𝑇Ω + e−

𝜇
𝑇Ω∗

Arg 𝐿1
+ 𝑁𝑡, 𝑛 ≈ Arg Ω

• Even if the number of expansion terms increases significantly, 
the effects of higher-order terms can be incorporated.

• Since the calculation cost can be dramatically reduced, 
calculations with high accuracy are possible.

𝐿 𝑁𝑡 , 𝑛 = σ𝑚 𝐿𝑚 𝑁𝑡 , 𝑛 = σ𝑚 𝐿𝑚
+ 𝑁𝑡 , 𝑛 + 𝐿𝑚

− 𝑁𝑡 , 𝑛

𝐿1 𝑁𝑡, 𝑛 ≈ 𝐿 𝑁𝑡, 𝑛 .

(arXiv:2311.11508)(PTEP 2022, 033B05)

Ω



Boundary of first-order transition in the heavy quark region

Ignoring the effect of complex phase,

• Once the critical point 𝜆𝑐 at 𝜇 = 0 for 𝑁f = 2

is determined, the critical line for 𝑁f = 2 + 1

can be given by solving  

Adding the effect of complex phase,

• Sign problem is mild near the critical point.

• Effect of the complex phase: very small

• As increasing density, the first-order                                                       
transition region becomes narrower.
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𝑁𝑡 = 6 (arXiv:2311.11508)

𝜅s

𝜅ud

1st order

crossover

Effective action in the heavy quark region

𝜆 = 𝑁𝑡

f=1

𝑁f



𝑛=𝑁𝑡

𝑛max

ሻ𝐿0(𝑁𝑡 , 𝑛 𝑐𝑛𝜅f
𝑛

𝑆eff = −6𝑁site𝛽
∗𝑃 −

𝑁𝑠
3𝜆

2
e
𝜇
𝑇Ω + e−

𝜇
𝑇Ω∗ ,

𝑆eff ≈ −6𝑁site𝛽
∗𝑃 − 𝑁𝑠

3𝜆 cosh
𝜇

𝑇
ReΩ

𝜆𝑐 = 𝑁𝑡 cosh
𝜇

𝑇


f=1

𝑁f



𝑛=𝑁𝑡

𝑛max

ሻ𝐿0(𝑁𝑡, 𝑛 𝑐𝑛𝜅f
𝑛



Lee-Yang zeros in the complex μ plane near the critical mass

• Indicator of Lee-Yang zero:

• Reweighting method
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𝑆eff = −6𝑁site𝛽
∗𝑃 −

𝑁𝑠
3𝜆

2
e
𝜇
𝑇Ω + e−

𝜇
𝑇Ω∗

= −6𝑁site𝛽
∗𝑃 − 𝑁𝑠

3𝜆 cosh
𝜇𝑅
𝑇

cos
𝜇𝐼
𝑇
Ω𝑅 − sin

𝜇𝐼
𝑇
Ω𝐼 + 𝑖 sinh

𝜇𝑅
𝑇

sin
𝜇𝐼
𝑇

Ω𝑅 + cos
𝜇𝐼
𝑇

Ω𝐼

𝑍 𝛽, 𝜆, 𝜇 = න𝐷𝑈 𝑒−𝑆eff

𝑍 𝛽,𝜆,𝜇

𝑍pq 𝛽,𝜆,𝜇
（𝑍pq: Ignoring the imaginary part of 𝑆eff）

𝜇 = 𝜇𝑅 + 𝑖𝜇𝐼

𝑁𝑡 = 6,𝑁𝑠 = 90, β∗ = 5.8905, 𝜆 = 0.0010 simulation pomt: λ0 = 0.0012

Transition point
1

2

1

3
0

0
𝜇𝑅/𝑇

𝜇𝐼
𝑇

2

Data: Ashikawa et al., arXiv2407.09156



Lee-Yang zeros in the complex μ plane near the critical mass

• Indicator of Lee-Yang zero:

• Reweighting method
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𝑆eff = −6𝑁site𝛽
∗𝑃 −

𝑁𝑠
3𝜆

2
e
𝜇
𝑇Ω + e−

𝜇
𝑇Ω∗

= −6𝑁site𝛽
∗𝑃 − 𝑁𝑠

3𝜆 cosh
𝜇𝑅
𝑇

cos
𝜇𝐼
𝑇
Ω𝑅 − sin

𝜇𝐼
𝑇
Ω𝐼 + 𝑖 sinh

𝜇𝑅
𝑇

sin
𝜇𝐼
𝑇

Ω𝑅 + cos
𝜇𝐼
𝑇

Ω𝐼

𝑍 𝛽, 𝜆, 𝜇 = න𝐷𝑈 𝑒−𝑆eff

𝑍 𝛽,𝜆,𝜇

𝑍pq 𝛽,𝜆,𝜇
（𝑍pq: Ignoring the imaginary part of 𝑆eff）

𝜇 = 𝜇𝑅 + 𝑖𝜇𝐼

𝑁𝑡 = 6,𝑁𝑠 = 90, β∗ = 5.8905, 𝜆 = 0.0010 simulation pomt: λ0 = 0.0012

Transition point
1

2

1

3
0

0
𝜇𝑅/𝑇

𝜇𝐼
𝑇

Roberge-Weiss singularity

Line connecting to the transition point of real 𝜇.

Fake zeros due to the sign problem, since 𝑍 > 0

𝜋𝑖

3

2

Data: Ashikawa et al., arXiv2407.09156



𝜇𝐼
𝑇

𝜇𝑅/𝑇

𝜇𝑅/𝑇

𝜇𝐼
𝑇

Lee-Yang zeros in Phase quenched (isospin) QCD

• The distance from the real axis is larger than expected.

• The transition point on the real axis is smaller than 𝜇𝑅
LYZ .
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𝑆eff = −6𝑁site𝛽
∗𝑃 −

𝑁𝑠
3𝜆∗

2
e
𝜇
𝑇Ω + e−

𝜇
𝑇Ω∗ → −6𝑁site𝛽

∗𝑃 − 𝑁𝑠
3𝜆 cosh

𝜇

𝑇
ΩR

Similar to 3-state Potts model
Critical point: ising universality class

𝑆eff = ⋯− 𝑁𝑠
3𝜆∗ cosh

𝜇𝑅
𝑇

cos
𝜇𝐼
𝑇
Ω𝑅 − sin

𝜇𝐼
𝑇
Ω𝐼 + 𝑖 sinh

𝜇𝑅
𝑇

sin
𝜇𝐼
𝑇
Ω𝑅 + cos

𝜇𝐼
𝑇
Ω𝐼

Lee-Yang zero for
𝑆eff = −6𝑁site𝛽

∗𝑃 − 𝑁𝑠
3𝜆ΩR

𝜆R
LYZ, 𝜆I

LYZ = 𝜆tr ,
2𝑛 + 1 𝜋

𝑁𝑠
3ΔΩ

(𝜆tr : transition point 
for real 𝜆, 𝑛: integer.)

ΔΩ

ΩR

𝜆𝑅

𝜆𝐼

𝜆∗ cosh
𝜇𝑅
𝑇
cos

𝜇𝐼
𝑇
= 𝜆tr

No Roberge-Weiss singularity

𝑁𝑡 = 6,𝑁𝑠 = 90

Complex phase: ignored 

change 
axis



Lee-Yang zeros in the complex μ plane when  Ns is small

• Indicator of Lee-Yang zero:

• Reweighting method
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𝑆eff = −6𝑁site𝛽
∗𝑃 −

𝑁𝑠
3𝜆

2
e
𝜇
𝑇Ω + e−

𝜇
𝑇Ω∗

= −6𝑁site𝛽
∗𝑃 − 𝑁𝑠

3𝜆 cosh
𝜇𝑅
𝑇

cos
𝜇𝐼
𝑇
Ω𝑅 − sin

𝜇𝐼
𝑇
Ω𝐼 + 𝑖 sinh

𝜇𝑅
𝑇

sin
𝜇𝐼
𝑇

Ω𝑅 + cos
𝜇𝐼
𝑇

Ω𝐼

𝑍 𝛽, 𝜆, 𝜇 = න𝐷𝑈 𝑒−𝑆eff

𝑍 𝛽,𝜆,𝜇

𝑍pq 𝛽,𝜆,𝜇
（𝑍pq: Ignoring the imaginary part of 𝑆eff）

𝜇 = 𝜇𝑅 + 𝑖𝜇𝐼

𝑁𝑡 = 6,𝑁𝑠 = 60, β∗ = 5.8911, 𝜆 = 0.0010 simulation pomt: λ0 = 0.0010

1

2

1

3
0

0
𝜇𝑅/𝑇

𝜇𝐼
𝑇

Roberge-Weiss singularity

Fake zeros due to the sign problem, since 𝑍 > 0

𝜋𝑖

3

2



𝜇𝐼
𝑇

𝜇𝑅/𝑇

𝜇𝑅/𝑇

𝜇𝐼
𝑇

Lee-Yang zeros in Phase quenched (isospin) QCD

• If the volume is small, the L-Y zeros become 
indistinguishable from the R-W singularity.

9

𝑆eff = −6𝑁site𝛽
∗𝑃 −

𝑁𝑠
3𝜆

2
e
𝜇
𝑇Ω + e−

𝜇
𝑇Ω∗ → −6𝑁site𝛽

∗𝑃 − 𝑁𝑠
3𝜆 cosh

𝜇

𝑇
ΩR

Similar to 3-state Potts model
Critical point: ising universality class

𝑆eff = ⋯− 𝑁𝑠
3𝜆∗ cosh

𝜇𝑅
𝑇

cos
𝜇𝐼
𝑇
Ω𝑅 − sin

𝜇𝐼
𝑇
Ω𝐼 + 𝑖 sinh

𝜇𝑅
𝑇

sin
𝜇𝐼
𝑇
Ω𝑅 + cos

𝜇𝐼
𝑇
Ω𝐼

Lee-Yang zero for
𝑆eff = −6𝑁site𝛽

∗𝑃 − 𝑁𝑠
3𝜆ΩR

𝜆R
LYZ, 𝜆I

LYZ = 𝜆tr ,
2𝑛 + 1 𝜋

𝑁𝑠
3ΔΩ

(𝜆tr : transition point 
for real 𝜆, 𝑛: integer.)

ΔΩ

ΩR

𝜆𝑅

𝜆𝐼

𝜆∗ cosh
𝜇𝑅
𝑇
cos

𝜇𝐼
𝑇
= 𝜆tr

No Roberge-Weiss singularity

𝑁𝑡 = 6,𝑁𝑠 = 60

Complex phase: ignored 

change 
axis



Lee-Yang zero in heavy quark QCD
• Action:                                                            𝜆 = 𝜆𝑅 + 𝑖𝜆𝐼

• Indicator of L-Y zero: 𝑍nor 𝛽, 𝜆 =
𝑍 𝛽,𝜆

𝑍 𝛽,𝜆𝑅

• Conditions at LYZ:  𝜆𝑅 = (constሻ, 𝑁𝑠
3ΔΩ𝜆𝐼 = 2𝑛 + 1 𝜋

• At the critical point, ΔΩ ∼ 𝑁𝑠
−3+𝑦ℎ,

10

𝑁𝑠 = 36 𝑁𝑠 = 42 𝑁𝑠 = 48 𝑁𝑠 = 54

𝑁𝑠 = 60 𝑁𝑠 = 72 𝑁𝑠 = 90 Simulation near
the critical point

β = 5.8905

λ = 0.0012

𝑁𝑡 = 6

𝑁𝑠 = 36 − 90

Re𝜆

Im𝜆

𝑆eff = −6𝑁site𝛽𝑃 − 𝑁𝑠
3𝜆ΩR

𝜆𝐼=
2𝑛 + 1 𝜋

𝑁𝑠
3ΔΩ

∼ 𝑁𝑠
−𝑦ℎ

ΔΩ

histogram

(𝑛: integer.)

ising universality class : 𝑦ℎ = 2.482

𝑁𝑠 = 90

60

48



Boundaries of first-order transitions in QCD phase diagram

• We expect that the first-order phase transition in the light mass region 
expands with increasing density.

• The first-order phase transition region may expand into the heavy quark 
region.

In the heavy-dense effective theory (𝜅 → 0, e𝜇/𝑇 → ∞, e−𝜇/𝑇 → 0ሻ

• Parameter: 𝐶 = 𝜅𝑁𝑡e𝜇/𝑇.     Symmetry under  𝐶 → 1/𝐶 and Ω → Ω∗

• In the heavy limit, [small 𝜇] 1st order → crossover → 1st order [large 𝜇]11

1st order

1st order?

1st order



Finite density Effect

• Partition function:

• 𝑊 𝑃,ΩR is the provability distribution function in terms of 𝑃, ΩR .

• For the case of μ = 0, when configurations are generated at 𝛽 and 𝜆, the 
following equations are satisfied at 𝑃, ΩR where the configuration 
generation probability is maximized.

𝜕𝐹 𝑃,ΩR

𝜕𝑃
= 6𝑁S

3𝑁𝑡𝛽 +
𝜕 ln𝑊 𝑃,ΩR

𝜕𝑃
= 0

𝜕𝐹 𝑃,ΩR

𝜕ΩR
= 𝑁𝑠

3𝜆 +
𝜕 ln𝑊 𝑃,ΩR

𝜕ΩR
= 0

• The peak position of 𝐹 𝑃, ΩR :  ≈ ⟨𝑃⟩, ⟨ΩR⟩.

• Right figure: ⟨𝑃⟩, ⟨ΩR⟩ as functions of 𝛽, 𝜆.

•
𝜕 ln𝑊 𝑃,ΩR

𝜕𝑃
and 

𝜕 ln𝑊 𝑃,ΩR

𝜕ΩR
can be measured. 12

𝑆eff = −6𝑁site𝛽
∗𝑃 − 𝑁𝑠

3𝜆 cosh
𝜇

𝑇
ΩR + 𝑖 sinh

𝜇

𝑇
ΩI Ω = ΩR + 𝑖ΩI

𝑍 = න𝐷𝑈 𝑒−𝑆 = න𝑊 𝑃,ΩR 𝑒6𝑁S
3𝑁𝑡𝛽𝑃 𝑒𝑁𝑠

3𝜆 cosh
𝜇
𝑇
ΩR cos 𝑁𝑠

3𝜆 sinh
𝜇

𝑇
ΩI

𝑃,ΩR

𝑑𝑃𝑑ΩR

= 𝐹 𝑃, ΩR

ΩR



Effect of the complex phase at finite 𝜇
• For finite 𝜇, the peak position is

• Avoiding the sign problem, cumulant expansion:

• We approximate    ln cos 𝑁𝑠
3𝜆 sinh

𝜇

𝑇
ΩI

𝑃,ΩR

≈ −
1

2
𝑁𝑠
3𝜆 sinh

𝜇

𝑇

2
ΩI
2

for qualitative estimation. (Gaussian approximation)

• If we write 𝛽, 𝜆 that are generated by configuration generation at μ = 0 to 

be 𝑃 , ⟨ΩR⟩ as 𝛽0, 𝜆0 , then 𝛽, 𝜆 that are 𝑃 , ⟨ΩR⟩ at finite μ are

13

𝜕𝐹 𝑃, ΩR

𝜕𝑃
= 6𝑁S

3𝑁𝑡𝛽 +
𝜕 ln𝑊

𝜕𝑃
+

𝜕 ln cos 𝑁𝑠
3𝜆 sinh

𝜇
𝑇
ΩI

𝑃,ΩR

𝜕𝑃
= 0

𝜕𝐹 𝑃, ΩR

𝜕ΩR
= 𝑁𝑠

3𝜆 cosh
𝜇

𝑇
+
𝜕 ln𝑊

𝜕ΩR
+

𝜕 ln cos 𝑁𝑠
3𝜆 sinh

𝜇
𝑇
ΩI

𝑃,ΩR

𝜕ΩR
= 0

𝛽 = 𝛽0 +
𝑁𝑠
3

12𝑁𝑡
𝜆 sinh

𝜇

𝑇

2 𝜕 ΩI
2
𝑐

𝜕𝑃
, 𝜆 cosh

𝜇

𝑇
= 𝜆0 +

𝑁𝑠
3

2
𝜆 sinh

𝜇

𝑇

2 𝜕 ΩI
2
𝑐

𝜕Ω𝑅

ln cos 𝑁𝑠
3𝜆 sinh

𝜇

𝑇
ΩI

𝑃,ΩR

= −
1

2
𝑁𝑠
3𝜆 sinh

𝜇

𝑇
ΩI

2

𝑐

+
1

4!
𝑁𝑠
3𝜆 sinh

𝜇

𝑇
ΩI

4

𝑐

−
1

6!
𝑁𝑠
3𝜆 sinh

𝜇

𝑇
ΩI

6

𝑐

+⋯

θ2 𝑐 = θ2 , θ4 𝑐 = θ4 − 3 θ2 2, θ6 𝑐 = θ6 − 15 θ4 θ2 + 30 θ2 3,⋯



Fluctuation of the complex phase
• Variance of Imaginary part of Polyakov loop ΩI

2

14

𝛽 = 𝛽0 +
𝑁𝑠
3

12𝑁𝑡
𝜆 sinh

𝜇

𝑇

2 𝜕 ΩI
2

𝜕𝑃
,

𝜆 cosh
𝜇

𝑇
= 𝜆0 +

𝑁𝑠
3

2
𝜆 sinh

𝜇

𝑇

2 𝜕 ΩI
2

𝜕Ω𝑅

ΩI
2 is large only near the first-order 

transition point.
This does not contribute to changing the 
nature of the phase transition at large 𝜇.

Lattice size: 303 × 6

ΩR



Phase quenched QCD (Ignore complex phase) (isospin μ) 
• If we ignore the complex phase,

• Simply replace 𝜆 at μ = 0 with 𝜆 cosh
𝜇

𝑇
to investigate phase quenched QCD. 

• Increasing 𝜆 means increasing 𝜅, so increasing 𝜆 makes the approximation of 
the hopping parameter expansion worse.

• Therefore, we fix 𝜆 at a small value and increase 𝜇.

• If we fix 𝜆, the convergence does                                                                            
not worsen.

• For example, λ = 0.005
For 𝑁f = 2, 𝑁𝑡 = 6

Critical point at μ = 0: λc = 0.0013

λ = 0.005 is in the crossover region.

The convergence of the hopping                                                                                               
parameter expansion is good. 
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𝑆eff = −6𝑁site𝛽
∗𝑃 − 𝑁𝑠

3𝜆 cosh
𝜇

𝑇
ΩR + 𝑖 sinh

𝜇

𝑇
ΩI

𝜆 cosh
𝜇

𝑇

Simulations were performed 

over a wide range of 𝛽, 𝜆 cosh
𝜇

𝑇
.

ΩR



Plaquette in phase quenched QCD (isospin QCD)
• As cosh 𝜇/𝑇 increases, the change in plaquette becomes steeper.

• This behavior is consistent with the existence of a pion-condensed phase at
large 𝜇.  

• The strong coupling expansion of ⟨𝑃⟩ does not depend on 𝜆 cosh 𝜇/𝑇 .

• Confinement phase: ⟨𝑃⟩ is consistent with the strong coupling expansion. 

• The 𝜆 cosh 𝜇/𝑇 term forces the deconfinement phase.

16

𝑃 =
𝛽

18
+

𝛽2

216

Strong coupling value 
𝜆 cosh

𝜇

𝑇

Lattice size: 303 × 6



Polyakov loop in phase quenched QCD (isospin QCD)

• First order phase transition at 𝜆 = 0

• Regarding the Polyakov loop, if we look closely at the changing part, 
the change becomes steeper as 𝜇 increases.

• ⟨ΩR⟩ changes almost perpendicular to the horizontal axis

• Shift of 𝛽 by the complex phase may be important.
Discontinuity at large 𝜇?  → first-order transition?

17

ΩR − ΩR 𝛽=0.5

ΩR 𝛽=9− ΩR 𝛽=0.5

first-order transition 

𝜆 cosh
𝜇

𝑇



Effect of the complex phase
• We estimate the change in β by the complex phase.

𝛽 = 𝛽0 +
𝑁𝑠
3

12𝑁𝑡
𝜆 sinh

𝜇

𝑇

2 𝜕 ΩI
2

𝜕𝑃

• 𝑃-dependence is much smaller than ΩR-dependence

• No 𝑃- dependence in the high temperature phase:

• Strong coupling limit (at low temperature)

at 𝜆 = 0:
18

ΩI
2 ΩI

2

Data in both phases High temperature phase

& 𝜆 sinh
𝜇

𝑇
≥ 1

Lattice size: 303 × 6

𝜕 ΩI
2

𝜕𝑃
ቚ
ΩR

= 0 (High 𝑇ሻ

𝑑 ΩI
2

𝑑𝑃
≈

3𝑁𝑡

𝑁𝑠
3𝑁𝑐

𝑃 𝑁𝑡−1 (Low 𝑇ሻΩI
2 ≈

1

2𝑁𝑠
3𝑁𝑐

2 +
3

𝑁𝑠
3𝑁𝑐

𝑃 𝑁𝑡

ΩRΩR



Estimation of 𝛽 shift by the complex phase 

• 𝛽 shift: 

ex.)  λ = 0.005

• When 𝜆 cosh
𝜇

𝑇
= 5.0 𝜇/𝑇 = 7.60 or 

greater, the graph changes significantly.

• 𝜆 cosh
𝜇

𝑇
= 10, 20 → 𝜇/𝑇 = 8.29, 8.99

• This suggests the discontinuity in 𝑃 at the 
transition point.

• A first-order phase transition is expected at 
large 𝜇/𝑇.

19

Fit function: ΩI
2 ≈ ΩI

2
𝜆=0

strong
1 − Ω𝑅 exp −3Ω𝑅

fit curve at 𝑃 = 0.5

𝛽 = 𝛽0 +
𝑁𝑠
3

12𝑁𝑡
𝜆 sinh

𝜇

𝑇

2 𝜕 ΩI
2

𝜕𝑃

𝑑 ΩI
2

𝑑𝑃
≈

3𝑁𝑡

𝑁𝑠
3𝑁𝑐

𝑃 𝑁𝑡−1 1 − Ω𝑅 exp −3Ω𝑅 low 𝑇 pahse

𝑑 ΩI
2

𝑑𝑃
= 0 high 𝑇 phase

Strong coupling limit at 𝜆 = 0

ΩI
2 = 0 at Ω𝑅 = 1

determined by eye
We assume

𝜆 cosh
𝜇

𝑇

low 𝑇

high 𝑇



Summary

• Boundary of first-order transition in the heavy quark region
• Sign problem is mild near the critical point.

• As increasing density, the first-order transition region becomes narrower.

• Lee-Yang zeros in the complex 𝜇 plane are    𝑍(𝜇)=0
• The distance from the real axis is larger than expected.

• The transition point on the real axis is smaller than 𝜇𝑅
LYZ.

• If the volume is small, the LY zeros become indistinguishable from the R-W singularity.

• Appearance of first-order phase transitions in the heavy and dense region
• First, we discussed the nature of the phase transition of phase-quenched finite-density 

QCD in the heavy quark region. 

• The first-order transition at zero density turns into a crossover as 𝜇 is increased, but, 
when we increase 𝜇 further, the change in the plaquette value near the crossover point 
becomes much steeper.

• Then, we estimate the effect of the complex phase. The result suggests the appearance 
of a first-order phase transition region at very large 𝜇.

20



Strong coupling limit (low temperature phase)

• Strong coupling expansion of ΩI
2 at 𝜆 = 0

• Plaquette is given by 

• Thus,

• consistent with the simulation data

• but 𝑃-dependence is very small.

• A large increase near the transition point.

• The derivative: 

21

ΩI
2 ≈

1

2𝑁𝑠
3𝑁𝑐

2 +
3

𝑁𝑠
3𝑁𝑐

𝑃 𝑁𝑡

𝑃 ≈
β

2𝑁c
2

ΩI
2 =

Ω − Ω∗

2𝑖

2

≈
1

2
ΩΩ∗ ≈

1

2𝑁𝑠
6𝑁𝑐

2

𝑥,𝑦

tr 𝑈𝑈⋯𝑈 𝑥tr 𝑈†𝑈†⋯𝑈†
𝑦

≈
𝑁𝑠
3

2𝑁𝑠
6𝑁𝑐

2 tr 𝑈𝑈⋯𝑈 𝑥tr 𝑈†𝑈†⋯𝑈†
𝑥
+

6𝑁𝑠
3

2𝑁𝑠
6𝑁𝑐

2 tr 𝑈𝑈⋯𝑈 𝑥tr 𝑈†𝑈†⋯𝑈†
𝑥+1

+⋯

≈
𝑁𝑠
3

2𝑁𝑠
6𝑁𝑐

2 +
6𝑁𝑠

3

2𝑁𝑠
6𝑁𝑐

2𝑁𝑐
𝛽

2𝑁𝑐
2

𝑁𝑡

=
1

2𝑁𝑠
3𝑁𝑐

2 +
3

𝑁𝑠
3𝑁𝑐

𝛽

2𝑁𝑐
2

𝑁𝑡

𝑑 ΩI
2

𝑑𝑃
≈

3𝑁𝑡

𝑁𝑠
3𝑁𝑐

𝑃 𝑁𝑡−1

ΩI
2

𝑃
First-order phase transition 

Lattice size: 303 × 6

𝜆 = 0

(𝑃 < 0.5ሻ



Roberge-Weiss singularity

• 𝑍3 center symmetry

• Gauge action and integral measure: invariant, Polyakov loop: 

• Quark determinant:  det𝑀 𝜅, 𝜇 ⇒ det𝑀 𝜅, 𝜇 +
2𝜋𝑖

3

• For Full QCD, 𝑍3 center symmetry: broken. But, symmetric if one changes 𝜇.

• Roberge-Weiss periodicity: 𝑍 𝛽, 𝜆∗, 𝜇 = 𝑍 𝛽, 𝜆∗, 𝜇 −
2𝜋𝑖

3
= 𝑍 𝛽, 𝜆∗, 𝜇 +

2𝜋𝑖

3

• R-W singularity: branch cut line at Im𝜇 = ±
𝜋

3
in the complex 𝜇 plane

• ex.) 𝜇𝑅 = 0, for the case of heavy quark effective theory,

22

Ω ⇒ 𝜔 Ω

𝑈center = 𝜔𝐼, 𝜔 = {1, 𝑒
2𝜋𝑖
3 , 𝑒

4𝜋𝑖
3 }

𝑆eff = −6𝑁site𝛽
∗𝑃 − 𝑁𝑠

3𝜆∗Re e𝑖𝜇𝐼/𝑇Ω

Polyakov loop histogram at Tc

Weighting in the positive real axis 
direction.  𝜇𝐼/𝑇 rotates Ω.

real
imaginary

At 𝜇𝐼/𝑇 = ±
𝜋

3
, the peak with the highest weight is swapped.

⇒ Branch cut (If one peak in the low-T phase, there is no cut.)

𝜋𝑖

3

𝑁𝑡 = 6,𝑁𝑠 = 90, β∗ = 5.8911, λ∗ = 0.0005

simulation point: λ0
∗ = 0.0010



Lee-Yang zero and Histogram of 𝛺𝑅 = 𝑅𝑒𝛺

• Indicator of Lee-Yang zero: 𝑍nor 𝛽, 𝜆 =
𝑍 𝛽,𝜆

𝑍 𝛽,𝜆𝑅
, （complex 𝜆 = 𝜆𝑅 + 𝑖𝜆𝐼）

𝑆eff = −6𝑁site𝛽𝑃 − 𝑁𝑠
3𝜆ΩR

𝑍nor 𝛽, 𝜆 =
1

𝑍
∫ 𝐷𝑈 𝑒−Re𝑆𝑒𝑖𝑁𝑠

3𝜆𝐼ΩR = 𝑒𝑖𝑁𝑠
3𝜆𝐼ΩR

𝛽,𝜆𝑅
= ∫ 𝑒𝑖𝑁𝑠

3𝜆𝐼ΩR𝑝Ω𝑑ΩR

• 𝑝Ω ΩR : Histogram of ΩR. Its Fourier transform is 𝑍nor 𝑁𝑠
3𝜆𝐼

• In the case of a strong first-order phase transition,

• In the complex plane, they lie on a straight line perpendicular to the real axis.

• 𝑝Ω Ω𝑅 has two peaks and the distance between the peaks is ΔΩ.

• If 𝑁𝑠
3𝜆𝐼ΔΩ ≈ 𝜋 + 2𝜋𝑛, (𝑛 = 0,1,2,⋯ ሻ, then 𝑍 𝛽, 𝜆 = 0.

• Scaling law near the critical point (spatial length: 𝐿 = 𝑁𝑠𝑎)

• Scaling Function 𝑓 𝑡𝐿𝑦𝑡 , ℎ𝐿𝑦ℎ （temperature: 𝑡 = 𝑇 − 𝑇𝑐 /𝑇𝑐, magnetic field: ℎ）

• ΩR corresponds to magnetization. Near the critical point, ΔΩ = 2 ΩR − ΩR ∼ 𝐿−3+𝑦ℎ

• Scaling law for the histogram of ΩR:  𝑝Ω ΔΩ𝐿3−𝑦ℎ; 𝑡𝐿𝑦𝑡 , ℎ𝐿𝑦ℎ

• Scaling law for 𝑍nor 𝛽, 𝜆

• Conjugate variable of ΩR𝐿
3−𝑦ℎ in the Fourier transform: 𝑁𝑠

3𝜆𝐼/𝐿
3−𝑦ℎ = 𝜆𝐼𝐿

𝑦ℎ𝑎−3

• Temperature variable: 𝑡 ∼ 𝜆 − 𝜆𝑐 , ℎ = 0 . 𝑍nor is a function of 𝐿𝑦ℎ𝜆𝐼.

• Lee-Yang zero behaves as 𝜆𝐼 ∼ 𝐿−𝑦ℎ 23

Ejiri, Phys.Rev.D73, 054502(2006)

Kiyohara et al., Phys.Rev.D104, 114509(2021)



Finite volume scaling analysis of histogram

• Histogram of Polyakov loop at transition point  𝑝Ω Ω𝑅

• −log 𝑝Ω Ω𝑅 at the critical point  Peak Gap ΔΩ vs 𝜆 − 𝜆𝑐

24

𝐿𝑇 = 𝑁𝑠/𝑁𝑡

Kiyohara et al., Phys.Rev.D104, 114509(2021)

First-order transition CrossoverNear the critical point

Histogram of
ΩR − ⟨ΩR⟩ 𝐿𝑇 3−𝑦ℎ

𝑡𝐿𝑦𝑡~ 𝜆 − 𝜆𝑐 𝐿𝑇 𝑦𝑡

Temperature variable: 
decreases the gap between the 
two peaks.

(Changing the height difference 
between the two peaks)

ΩR − ⟨ΩR⟩ 𝐿𝑇 3−𝑦ℎ

Δ
Ω
𝐿
𝑇

3
−
𝑦
ℎ

At the phase transition point, the 
magnetic field variable is ℎ=0.

𝜆 − 𝜆𝑐 𝐿𝑇 𝑦𝑡

Ising universality class:  𝑦ℎ = 2.482, 𝑦𝑡 = 1/𝜈 = 1/0.630

𝑁𝑡 = 4


