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Bigger Picture: Understand 
the thermodynamics at the 
QCD chiral transition and 
exploration of the QCD phase 
diagram with lattice chiral 
fermions i.e. Möbius Domain 
Wall fermions.
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Configuration generation: Grid (https://github.com/paboyle/Grid) 
Measurements :  (i)   Hadrons   (https://github.com/aportelli/Hadrons)  
                              (ii)  Bridge++ ( https://bridge.kek.jp/Lattice-code/) 
                                       
Data Analysis : https://github.com/LatticeQCD/AnalysisToolbox

Code bases
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A “Recap” on Chemical potential on the lattice

(1 ± γ4)U±4(x) → (1 ± γ4)e
± ̂μU±4(x)

Continuum prescription, Divergence for the free fermion 
case in QNS: χ2 ∼ 1/a2

The prescription for chemical potential on the lattice,
P. Hasenfratz, F. Karsch, Phys.Lett.B 125 (1983) 308-310 

R. V. Gavai,Phys. Rev. D 32, 519 

No additional divergences appear in the interacting theory.

Steven Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L. Sugar, Phys. Rev. Lett. 59, 2247. 
Rajiv V. Gavai, Sayantan Sharma, Phys.Lett.B 749 (2015) 8-13

(1 ± γ4)U±4(x)((1 ± γ4)U±4(x) → (1 ± γ4)e
± ̂μU±4(x) J. C. R. Bloch and T. Wettig, Phys. Rev. D 76, 114511 

For Domain Wall fermions :

Z = ∫ DU ∏
f=u,d,s

detM(mf )exp[−Sg], det M(mf , ̂μf ) = [
det D(mf , ̂μf )DWF

det D(mPV, ̂μf )DWF ]
Sign problem for, . We use Taylor expansions.μf ≠ 0
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Quark number susceptibility and conserved 
charge fluctuations in (2+1)-flavor QCD
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In QCD with two light  and one strange flavor , pressure is 
expressed via a Taylor expansion in quark chemical potentials ( ).
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In the context of heavy ion collision experiments there are 3 
conserved charges, B, Q and S that couples to ,μB, μQ, μS
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FIG. 1. Contributions of di↵erent Dn to the �
B
n . Each blob

represents insertion of the 0th component of the conserved
current. Solid red and dotted black lines represent directly
exponentiated and cross terms respectively.

⌦
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↵
with i · a+ j · b+ · · ·+ k · c = n [26, 27],

where

Dn(T ) = D̄n · n! =
@
n ln det[M(T, µB)]

@(µB/T )n

����
µB=0

, (3)

and the h·i denotes average over gauge field ensembles
at µB = 0, i.e. hOi =

R
Oe

�S det[M(T, 0)]DU/Z. The
physical interpretation of Dn is simple for the continuum
theory: Dn =

R
dx1 · · · dxnJ0(x1) · · · J0(xn) is the inte-

grated n-point correlation function of the 0th component
of the conserved (baryon) current J0(x) at a space-time
point x. Note that, due to CP symmetry of QCD all Dn

for n = odd(even) are purely imaginary(real) and only
the n = even terms contribute to Eq. 1. In practice, lat-
tice QCD computations of the �

B
N involve computations

of all Dn for n  N as intermediate steps, and �
B
N are

obtained from combinations of Dn and their powers.
Contributions of various combinations of Dn to the few

lowest order Taylor coe�cients are sketched in FIG. 1. If
one considers the factorials and the powers of µB/T asso-
ciated with each Dn in the sum of Eq. 1, it is not di�cult
to realize that all contributions of each Dn to �P

E can
be resummed into exponential forms. For example, con-
tributions of Dn

1 from all �B
n in Eq. 1 can be resummed as

exp
⇥
D̄1(µB/T )

⇤
. Similarly, contributions of all Dn

2 can
be resummed as exp

⇥
D̄2(µB/T )2

⇤
, and so on. Also it is

easy to see that the contributions of the mixed terms like
D

n
1D

m
2 arise from exp

⇥
D̄1(µB/T )

⇤
⇥ exp

⇥
D̄2(µB/T )2

⇤
.

Thus, it is possible to write down a resummed version
of Eq. 1, viz.

�P
R
N

T 4
=

1

T 3V
ln

*
exp

"
NX

n=1

D̄n

⇣
µB

T

⌘n
#+

, (4)

providing the EoS up to infinite orders in µB . The
�P

R
N can be considered as a µB-dependent e↵ective

action obtained by resumming up to N -point corre-
lation functions of the conserved current. Expansion

of �P
R
N in powers of µB/T yields an infinite series

in µB/T , in addition to the truncated Taylor series:
�P

E
N +

P1
n>N hD̄

i
1 · · · D̄

j
N i(µB/T )n, where i, j = 0, . . . , N

satisfying 1 · i + · · · + N · j = n. The Taylor expanded
(NE

N ) and the resummed (NR
N ) net baryon-number den-

sities can be straightforwardly obtained as a single µB-
derivative of �P

E and �P
R in Eq. 1 and Eq. 4, respec-

tively.
The resummed version in Eq. 4 also highlights

the connection between the Taylor expansion and
the reweighting method. In the reweighting method
Z(T, µB)/Z(T, 0) = hdet[M(T, µB)]/ det[M(T, 0)]i can
be calculated, if computationally feasible, by exactly
evaluating the ratio of the fermion matrix determinants
on the gauge fields generated at µB = 0. In more realistic
lattice calculations with large volumes, exact evaluations
of the determinant ratios might not be computationally
feasible and one may consider evaluating det[M(T, µB)]
within some approximation scheme to obtain approxi-
mate partition function Z

R
N (T, µB) ⇡ Z(T, µB). Follow-

ing the spirit of the Taylor expansion, one such approx-
imation scheme can be expansion of det[M(T, µB)] in
powers of µB/T . Keeping in mind det[M ] = exp[Tr lnM ]
and Eq. 3, one can immediately recognize

Z
R
N (T, µB)

Z(T, 0)
=

*
exp

"
NX

n=1

D̄n

⇣
µB

T

⌘n
#+

. (5)

Since CP symmetry dictates that the even(odd) Dn are
purely real(imaginary) and the partition function must
be real, a measure of the severity of the sign problem is
given by the average phase factor for ZR

N (with µB real),

⌦
cos⇥R

N

↵
=

*
cos

0

@
N/2X

n=1

Im[D̄2n�1]
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T

⌘2n�1

1

A
+
. (6)

An expansion of
⌦
cos⇥R

N

↵
in µB/T leads to the Tay-

lor expanded measure of the average phase of the parti-
tion function [23, 26], which we will denote by ⇥E

N . As
the sign problem becomes more severe the average phase⌦
cos⇥R

N

↵
⇡ 0 and resummed results will also show signs

of breakdown. Furthermore, although �P
E
N can be eval-

uated for any complex value of µB , �P
R
N becomes un-

defined when Re[ZR
N ]  0 for a given N and statistics,

leading to a natural breakdown of the resummed results.
The location of the zeros of ZR

N in the complex-µB plane
will indicate the µB region where such resummation can
be applicable. Obviously, for any given N the region of
applicability of �P

E
N cannot exceed the same for �P

R
N .

Lattice QCD computations.– For this work, we used the
data for �B

n and Dn generated by the HotQCD collabora-
tion for calculations of the QCD EoS [11] and the chiral
crossover temperature [28] at µB > 0 using the Taylor ex-
pansion method. The HotQCD ensembles were generated
with 2+1-flavors of Highly Improved Staggered Quarks
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FIG. 2. Stochastic error of (Du

1 )
2 with the number of inverse of the light quark Dirac matrix

D(mu)�1.

chemical potentials (µf ).93
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Here, µ̂f = µf

T
for f 2 {u, d, s} and ~µ = (µu, µd, µs). The expansion coe�cients �uds

ijk
94

represent the quark number fluctuations at ~µ = ~0:9596

To implement the quark chemical potential into the Möbius Domain Wall fermions action,97

we use the prescription (1 ± �4)U±4(x) ! (1 ± �4)e±µ̂U±4(x) [8, 9]. Then the partition98

function, Z, can be written as:99

Z =

Z
DU

Y

f=u,d,s

detM(mf , µf ) exp[�Sg],

detM(mf , µf ) =


detD(mf , µf )

detD(mPV , µf )

�
. (5)

We will express all the quark number fluctuations in the following sections in terms of the100

Df

n
, f 2 {u, d, s},101

Df

n
⌘ @n

@µ̂n

f

ln detM(mf , µ̂f )

�����
~µ=0

, (6)
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Quark number susceptibilities for Domain Wall fermions
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Stochastic error reduction

N�/N⌧ = 2 for the heavier light quark mass with a coarse lattice of N⌧ = 12 and a fine121

lattice of N⌧ = 16. For the physical light quark mass, we use an aspect ratio N�/N⌧ = 3122

with a coarse lattice of N⌧ = 12.123

The measurement of traces for calculating quark number susceptibilities involves the124

application of Gaussian random sources and dilution methods for noise reduction. The125

diagonal and o↵-diagonal susceptibilities are defined through the derivatives of the logarithm126

of the partition function. Notably, (Df

1 )
2 is identified as the most noise-sensitive part of127

the calculations, necessitating a substantial number of Gaussian random sources and the128

application of dilution for estimation.129

Df

1 = Tr


D(mf )

�1 dD

dµf

�
� Tr


D(mPV)

�1 dD

dµf

�
(23)

' 1

Nn

NnX

j=1


⌘†
j
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j
D(mPV)

�1 dD

dµf

⌘j

�
(24)

where ⌘j is a Gaussian random number source, and Nn is the total number of noise vectors.130

We have found that to decrease the stochastic error in (Df

1 )
2, it is useful to use identical131

noise vectors for both the flavor part and the Pauli-Villars part, as shown in Eq. (24).132

Below, we will discuss how to further reduce the stochastic error using the dilution method.133

1. Dilution134

The dilution refers to dividing the single random noise vector into N components, with135

only one component assigned nonzero values at any given time. The trace measurement136

formula can be written as:137

Df

1 ' 1
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NnX

j=1

"
NX
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⌘†
aj
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�1dD(mf )

dµf

⌘aj �
NX

a=1

⌘†
aj
D(mPV)

�1dD(mPV)

dµf

⌘aj

#
(25)

where ⌘aj is the diluted Gaussian random number source. We explore three possibilities for138

the dilution:139

1. Even-Odd splitting of the noise vector: This method splits the single noise vector140

into two parts (N = 2) at even and odd lattice sites.141
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Diluted noise vector,

We see 2-3 times error reduction using Spin and time slice dilution.



Lattice setup and Outline
•  and tuning of the input quark masses. 

• Quark number susceptibilities and conserved charge 
fluctuations for  for 

. 

• Sensitivity of the fluctuations on the pion masses. 

• Fourth-order conserved charge fluctuations for 
physical quark masses.

mres

ml = 0.0036ms(mπ ∼ 135 MeV)
363 × 12
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Lattice action : Symanzik with stout 
smear + Möbius Domainwall fermion. 

 
Tuning of input light quark masses for 

measurement : mf = mlatt
f − mres ; f = {u, s}

  correction for mres LS = 12
• Performed calculations on 

the Line of constant 
physics (LCP) (  
fixed).  

•  is almost 

independent of  . 

• We use  calculated on 

the LCP,   to 
tune the input quark 
masses for configuration 
generation and 
measurements for 

ml /ms

mres
ml

mres
ml /ms = 0.1

ml /ms = 0.036
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Quark number susceptibility with Möbius Domain 
Wall Fermions in (2+1)-flavor QCD

’s rise rapidly in the vicinity of the .  

At high T:  ’s are smaller than the Ideal gas limit. 

  reaches closer to Ideal gas limit.

χ f
2 Tpc

χ f
2

χ fg
11

In high T PT : ,  χ f
2 ∼ χ f,ideal

2 + O(g2) χ fg
11 ∼ O(g6lng) A. Vuorinen, PRD68, 054017 (2003)



Comparison of  calculations with Möbius 
Domain Wall Fermions and Staggered fermions

χB
2

• Data Comparison: Our lattice data are systematically higher than those from 
HISQ and stout smeared staggered quarks near the pseudo-critical 
temperature.  

• Measurements: Performed on 150 gauge configurations per temperature, 
with 100 trajectory separations. 

• Further Analysis: Additional lattice spacing and additional volume is required 
to better understand this discrepancy.

Refs: HiSQ : (HotQCD) D. Bollweg et al, arXiv:2107.10011 [hep-lat]. 
Stout : (WB) R. Bellwied et al, arXiv:1910.14592 [hep-lat]
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Comparison of  calculations with Möbius 
Domain Wall Fermions and Staggered fermions

χQ
2 , χS

2

• We saw larger value in the  in the hadronic phase, compared to the HISQ and stout smeared 
staggered quarks calculations at finite lattice spacing. 

• In a non-interacting HRG :   is dominated by pions and  is dominated by kaons. 

χQ
2

χQ
2 χS

2

Refs: HISQ : D. Bollweg et al, arXiv:2107.10011 [hep-lat]. 
Stout : R. Bellwied et al, arXiv:1507.04627 [hep-lat]

130 140 150 160 170 180 190 200 2100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

T[MeV]

‰S2

363 ◊ 12 : MDWF

643 ◊ 16 : HISQ
643 ◊ 16 : Stout
QMHRG2020

130 140 150 160 170 180 190 200 2100.0

0.1

0.2

0.3

0.4

0.5

0.6

T[MeV]

‰Q2

363 ◊ 12 : MDWF

643 ◊ 16 : HISQ
643 ◊ 16 : Stout
QMHRG2020



Sensitivity of ,  on different light quark 
masses

χBS
11 χQ

2

• In hadronic phase ,  

• In a non-interacting HRG :   is dominated by pions and  is dominated by lambda 
baryons. 

• We see that  is sensitive to the pion mass in the temperature, 
 however  is not that sensitive to the hadron masses.

χX
2 ∼ exp(−mH /T )

χQ
2 χBS

11

χQ
2

Tpc ≤ 160 MeV χBS
11
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Leading order kurtosis of electric charge 
cumulants
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T [MeV]
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Q 4
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JLQCD:Nt=12
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Free fermi gas

RQ
42 = χQ

4 /χQ
2 + O( ⃗μ 2)

⃗μ = {μB, μQ, μS}

Leading order kurtosis value close to the Pseudo-critical 
temperature, 

•  ,  MeV 

•  ,  MeV

RQ
42 = 1.3(5) T = 150

RQ
42 = 0.9(5) T = 155



Summary and Conclusions

• We present results of conserved charge fluctuations 
using (2+1)-flavor QCD with a chiral fermion formalism, 
specifically Möbius Domain Wall Fermions. 

• We compare our calculations of second order 
fluctuations with the staggered fermion formalism 
calculations at finite lattice spacing. 

• We also present fourth order conserved charge 
fluctuations for the physical value of the quark masses. 

• In future, we will extend our calculations to smaller 
lattice spacings to study the cut-off dependence of 
conserved charge fluctuations.

Thank you for your attention !!



Quark number susceptibility with 
Domain wall fermions 

Z = ∫ DU ∏
f=u,d,s

detM(mf )exp[−Sg], det M(mf , ̂μf ) = [
det D(mf , ̂μf )DWF

det D(mPV, ̂μf )DWF ]

χ f
2 =

Nτ

N3
σ

∂2 ln Z
∂ ̂μ2

f
̂μf=0

=
Nτ

N3
σ ⟨ ∂2

∂ ̂μ2
f

ln det M⟩ + ⟨( ∂
∂ ̂μf

ln det M)
2

⟩
M. Cheng et al, 

Phys.Rev.D81:054510,2010 ; 
P. Hegde et al, PoS 

LATTICE2008:187,2008

17

, where ,  is the quark chemical potential for flavor f.̂μf = μf /T μf

The diagonal and off-diagonal quark number susceptibilities can be written as,

χ fg
11 =

Nτ

N3
σ

∂2 ln Z
∂ ̂μf∂ ̂μg

̂μf=0

=
Nτ

N3
σ

⟨D f
1Dg

1 ⟩, f ≠ g, f, g = {u, d, s}

J. Bloch and T. Wettig, Phys. Rev. Lett. 97, 012003 (2006) U4(x) → exp( ̂μf )U4(x), U†
4 (x) → exp(− ̂μf )U†

4 (x),

=
Nτ

N3
σ

⟨D f
2⟩ + ⟨(D f

1)2⟩, f = {u, d, s}

 are the most noisy part 
in our calculation

(D f
1)2 and D f

1 Dg
1



Quark number susceptibility with 
Domain wall fermions 

χ f
2 =

Nτ

N3
σ

∂2 ln Z
∂ ̂μ2

f
̂μf=0

=
Nτ

N3
σ ⟨ ∂2

∂ ̂μ2
f

ln det M⟩ + ⟨( ∂
∂ ̂μf

ln det M)
2

⟩
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, where ,  is the quark chemical potential for flavor f.̂μf = μf /T μf

The diagonal and off-diagonal quark number susceptibilities can be 
written as,

χ fg
11 =

Nτ

N3
σ

∂2 ln Z
∂ ̂μf∂ ̂μg

̂μf=0

=
Nτ

N3
σ

⟨D f
1Dg

1 ⟩, f ≠ g, f, g = {u, d, s}

=
Nτ

N3
σ

⟨D f
2⟩ + ⟨(D f

1)2⟩, f = {u, d, s}

 are the most noisy part 
in our calculation

(D f
1)2 and D f

1 Dg
1
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