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Two approaches to quantum time-evolution

1) Schrodinger equation

0
ih—w =W
equivalent Ot '\
Hamiltonian

2) Feynman path integral

W(xs, tr) = /D:c(t)llf(a:(ti),ti)e z(t)]

g — f@)(dt\ action
Lagrangian

advantageous for:

® applicationsto large numbers of d.o.f. (including QFT)

® extensionsto QG (diffeomorphism ) and matrix model (nonperturbative strings)
® possible applications of powerful Monte Carlo simulation (important sampling)
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Progress in real-time path integral

» quantum mechanics : W (zr, te) = [ Dx(t) W(x(t), )= =M/

z(tf) = f

» quantum gravity (“time” is one of the dynamical varfiables)

win = [ Dgu

» IKKT matrix model  nonperturbative formulatjon of stiing theory
(“time” is an emergent goncept)
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the oscillating behavior

e

conceptual problem : How to define the oscillating integral

B Picard-Lefschetz theory

technical problem : How to overcome the sign problem in MC sim.
_ » the generalized (Lefschetz) thimble method

(including the “Worldvolume approach” of Fukuma-Matsumoto (’20))
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1. Generalized thimble method and the
Picard-Lefschetz theory



The generalized thimble method

Alexandru, Basar, Bedaque, Ridgway, Warrington, JHEP
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Fukuma’s talk on Sept.?” 1605 (2016) 053

7 = /RNda:e_S(x) S(z) e C

_Lefschetz thimble(r — oo)

<
deformed integration contour
0S(z)
8z

z(x; T)

anti-holomorphic
gradient flow

0

saddle point:

L originalintegration contour (x € ]RN)

Solve Lz (z;0) = ‘95(%&2;0))

with the initial condition z(z;0) = z € RY

- One obtains a one-to-one map from z to z(x; 7),
which defines a contour deformation. (Cauchy’s theorem)

fromo=0too=r1




An important property of the gradient flow

complex-valued!

d 0S(z(x;0)) 0z (x; o) anti-holomorphic gradient flow

do 0z, do gzk(:c; ) = 0S5 (2(z; 0))
_08(2(x;,0))05(2(x;0)) do Oz,
- (92:]C 8zk

8S(z(z: o)) |?
8Zk

real positive !

Real part of the action increases along the flow,
while the imaginary part is kept constant.

The imaginary part tends to become constant
as the flow time increases. (Sign problem is solved!)
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Picard-Lefschetz theory (7 — 00)

multi-dimensional version of steepest descent method

~relevant saddles
(can be reached by a flow)

<
‘— saddle point: 95(2) =0

Lefschetz thimbles

0z
0, 0S(z(x;0))
—zp(z,0) =
60' 8Zk
¥ original integration contour

¥ irrelevant saddles

(cannot be reached by a flow)

_ —S(x)
/[ = /RNda:e

An oscillating integral can be made well defined uniquely.
No ambiguity in the choice of integration contour.




2. A new picture of guantum tunneling

JN, Katsuta Sakai, Atis Yosprakob,

“A new picture of quantum tunneling in the real-time path integral
from Lefschetz thimble calculations”

JHEP 09 (2023) 110, e-Print: 2307.11199 [hep-th]



Time-evolution of the wave function

W (ar, tr) = [ Da(t) W (), ) 0]

S[z(t)] = /dt{%m (%
V(z) = a(z? —1)?

W (x,t) = exp{—%
oc=0.3,

e =1

TEtf—ti =2

Discretize the time as:

In = w(tn)
tn

N

x(tf) = xf
2 2
) —V(IB)} |W(3$at)|
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2+ | |
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Results of GTM (with flow time integration a la Fukuma-Matsumoto)

typical config z(¢) at large 7
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Quantum tunneling is represented
by complex trajectories.




Introducing momentum in the initial state

W(x,t;)) = exp {—ﬁ (r+1)2+ ip:v}
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Classical motion over the barrier
becomes dominant.
— almost real trajectories




A new understanding of quantum tunneling

W(ar,tr) = [ Da(®) Wah), 1) eSO
z(tf) = zf
initial wave function W (z,t;) = p(x) ePr/h

¢(x) is assumed to have a finite support A = [zmin, Tmax]

h— 0 Classical EOM Boundary condition
5S[x(t)] _ p(t) €A, @(t) =L
- " =0 m
dx(t) x(tf) = xf
® If real x(t) exists, real trajectory
itis arelevant & dominant saddle. emergence of classical motion
® Ifreal z(t) does not exist,
the relevant saddle with min. ImS(> 0) » complex trajectory
dominates.

semi-classical description of
Iprob. amplitude| ~ e~ IMmSlz1/n quantum tunneling

(instanton-like suppression)

Can be observed by using the weak measurement



3. Quantum tunneling at the beginning of
the universe

Chien-Yu Chou, JN,

“Monte Carlo studies of qguantum cosmology by the generalized Lefschetz
thimble method”

e-Print: 2407.17724 [gr-qc]



How did the Universe begin ?

A. Vilenkin

“Creation of Universes from Nothing”

Phys.Lett.B 117 (1982) 25
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tunneling from nothing

J. B. Hartle and S. W. Hawking
“Wave function of the Universe”
Phys. Rev. D 28,(1983) 2960

N

Euclidean
(=tunneling)

W[h] = / Dgpuy e S191/1

Path integral over
Euclidean geometry

no-boundary wavefunction

Quantum Cosmology




Issues in guantum cosmology

® Vilenkin’s proposal seems to have instability in fluctuations
due to the “wrong” Wick rotation.
127r2) |i

AN

4
@ ds Vilenkin
S4

South Pole

W ~ exp (—

'

Lorentzian

t = —7 Hartle-Hawking
—— -
tunneling at the beginning of the Universe %)

® Hartle-Hawking’s proposal seems to be incompatible
with the inflation scenario since it favors A = 0.

® Which is the relevant saddle point ?



mini-superspace model

Halliwell-Louko, Phys.Rev.D 39 (1989) 2206

Assuming homogeneous, isotropic, closed space-time

ds® = a?(n)(=N(n)?dn? + d232) n : conformal time
scale factor lapse function

Einstein-Hilbert action A
Senla, N] = 672 /dn{—ﬁ (Z—z) —I—NV(a)} V(a) = a® — §a4

— a2
change of variables: 4= "5
dn = a “(t)dt

N2
q(t)

soin =02 [l L (4 45 (1-20)

g(t) can be integrated out by the Gaussian integral
Integration over N has ambiguity in the choice of contour.

ds® = ———dt® + q(t) d$23° N = const. (reparam. inv.)

Picard-Lefschetz theory = Vilenkin’s saddle becomes relevant.

Feldbrugge-Lehners-Turok, Phys.Rev.D 95 (2017) 10, 103508, 1703.02076 [hep-th]
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Simulating guantum cosmology

g(l) = 0.8

classical Req(t)

..... classical Img(t)

o simulation Re<q(t)>

A simulation Im<q(t)>

— Classical Req(t)

----- classical Imq(t)

© simulation Re<q(t)>

A simulation Im<q(t)>

&__@.--&"1_0t

O "no boundary” condition

ImN

10

08f -

Chou-JN, 2407.17724 [gr-qc]

Vilenkin’s saddle point

becomes relevant.

Im( ) > O IJ_V

i » sample points
e N(saddle)

s <N>

|mag|nary tlme Euclidean geometry
(quantum tunneling)

* ReN

Im N

“real time” emerges = Lorentzian geometry

I 1 I I I 1 1 I I 1 I I 1 1 I
002 0.04 0.06 .08

(classical motion)

Next step : Add tensor modes and investigate the instability issue.




4. Quantum decoherence from saddle points

JN, Hiromasa Watanabe, “Quantum decoherence from saddle points”
e-Print: 2408.16627 [quant-ph]



Couple the system to an environment

1 1
Ls =7 Mi(t)? — 5 Mwi z(t)?

Ne
L = Ls+ Lg+ Lint Le= 5, {Smit®? - Smul @7}
H ’ Ng¢
Caldeira-Leggett ('83) L =ca® S ¢ .

k=1
reduced density matrix after tracing out the environment

Ng
ps(aE, TF; te) = /’Dwa [[ D¢"DFDihk e Serr(xF:a:3:00)

k=1
Seff(2,%,¢, 4, q0) = —115(2,¢) = (& D} +50(q0)G ;5 (fL‘o + 75)
J Gau55|an initial state

assumed for the system

---------- ‘ x, ¢*

K E' "W : : i I ) xi(t)— 7 (tp) ‘Tracing out
Environment initially E 1w g : | . . . SI?F B =4 Ur environment &
in thermal equilibrium : : g g e s s ‘
with temperature 1/ ' i) — q(to)i t Final conditions

itial conditio iﬁ

Initial conditions



Exact results from saddle points

JN, Hiromasa Watanabe, e-Print: 2408.16627 [quant-ph]

Introducing X, = {z;, %;, qF, G7, (5);}

e - 1
Seﬂ:(xa L,4,4, QO) — EXUMMVXV — CUJXM + B

saddle point: X, = (M‘l)w Cy

Integrating Yy,
1 —A

ps(TF, TF tF) = me ;

A=B- %cu (M—l)W Cy

Quantum decoherence is captured by complex saddle points.
(analogous to what we have found for quantum tunneling)




Disappearance of interference pattern

~ : coupling with environment JN, Hiromasa Watanabe, in preparation
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Master eq. (with Born and Markov approximations)
d

ps(a Eit) = K(z,2)ps(e, T,1) | (wr € weur < T =71

i (0% 07 i 5 5 o o 0
K(z,7) = - — M 7)) (- F) [— — —
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The effect of decoherence is x ;é

Quantum decoherence is captured by complex saddles in the real-time path integral.




5. Summary and discussions



summary

® Quantum time-evolution includes many interesting physics.

» quantum tunneling
» beginning of the Universe
» quantum decoherence

® Real-time path integral : very useful in studying these things.

» Oscillating integral can be dealt with by the Picard-Lefschetz theory.
» These phenomena can be captured by relevant (complex) saddle points.
» Monte Carlo simulation is possible by using the generalized thimble method.

@® \arious applications are waiting for us!

* Quantum-to-classical transition (How does the classical world emerge?)

* Measurement problems (Schrédinger’s cat)

* Instability problem of the Vilenkin’s saddle (smooth beginning of the Universe)

* Matrix model (emergence of (3+1)-expanding Universe from superstring theory)
* Quantum chaos (and its relation to blackholes through holography)

* Quantum information (and its relation to AdS/CFT) etc.
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