Multigrid Solvers in Bridge++

Issaku Kanamori (RIKEN)

based on works with Bridge++ Project members

T. Aoyama, K. Kanaya, H. Matsufuru, Y. Namekawa, H. Nemura and K. Nitadori

and

W.-L. Chen, K.-I. Ishikawa,

Sep. 25, 2024 German-Japanese seminar 2024 at Mainz

Introduction

Main bottle neck of the LQCD: solver to solve Dirac equation both in HMC and measurements As the quark mass *am* becomes smaller, takes more and more time ⇒Multigrid solver has a very mild mass dependence

taken from M.Rottmann, Lattice 2015

64⁴ lattice, 128 core

Outline

- 1. Multigrid Algorithm
- 2. Bridge++
- 3. Performance (Clover fermion)
- 4. Domainwall fermion
- 5. Summary and Outlook

application to QCD: R. Babich et al. PRL 105 (2010) 201602 ML based: C. Lehner and T. Wettig, PRD 108 (2023) 034503 our implementation is based on DDαAMG: A. Frommer et al., SIAM J. Sci. Comput. 36 (2014) A1581

Multigrid steps

- used as a preconditioner
- Restriction (R): $|x\rangle \rightarrow x(I, X) = \langle I(X)|x\rangle$ fine grid (original lattice) \rightarrow coarse grid
- Coarse grid solver: solve the coarse system
- Prolongation (P): $x(I, X) \rightarrow x(I, X)|I(X)\rangle$ coarse grid \rightarrow fine grid
- Smoother: improve the solution in the fine grid
- null space vector $|I\rangle$: adoptively improved $|I(X)\rangle = |I\rangle$ on domain X, otherwise 0

Our implementation I.K., K.-I. Ishikawa and H. Matsufuru, ICCSA2021 [2111.05012]

- 2-level multigrid, single precision
 - coarse solver: BiCGStab
 - post smoother: multiplicative Schwartz Alternating Procedure (SAP)
 - outer solver: Flexible BiCGStab
- setup: generate N_{vec} null space vectors initial SAP + 4 times adaptive MG preconditioner

I. Kanamori: German-Japanese seminar 2024

Bridge++

first public version: 2009, the latest (v2.0.2): Feb. 2024

Present Project Members

Tatsumi Aoyama (U. of Tokyo), Issaku Kanamori (RIKEN), Kazuyuki Kanaya(U. of Tsukuba), Hideo Matsufuru (KEK), Yusuke Namekawa (Hiroshima U.), Hidekatsu Nemura (Osaka U.), Keigo Nitadori (RIKEN) + contributing to MG solver Ken-Ichi Ishikawa (Hiroshima U.), Wei-Lun Chen (SOKENDAI)

Features

- C++ object oriented framework
- Portable, easy to read, and extendable keeping reasonable performance
- Standard fermions, HMC, some measurements with test suite
- Extended to flexible data layout: version 2.0 ("alternative")

Y.Akahoshi et al., J.Phys.Conf. Ser 2207 (2022)1, 012053

- SIMD version for Intel AVX-512
- GPU version with OpenACC (+ CUDA)
- SIMD version for A64FX (Fugaku, QPACE4, etc.)

I. Kanamori: German-Japanese seminar 2024

Bridge++ for Fugaku

- SIMD: 512 bits 8 doubles or 16 floats
 - rrrr...iiii.... layout for complex numbers (not riri...)
 - 2-dim tiling in x-y directions
- Neighboring communication Persistent communication with Fujitsu extension of MPI
- can call QCD Wide SIMD library (QWS)

QWS https://github.com/RIKEN-LQCD/qws K.-I. Ishikawa et al., Comp. Phys. Comm. 282k (2023) 108510

- a solver library for Clover fermion mixed prec. nested BiCGStab with SAP preconditioner
- outcome of co-design for Fugaku
 102 PFlops with 147,456 nodes (i.e., almost full system)
- SIMD: rrrr...iiii.... layout in 1-dim
- uses low level communication API (uTofu)

Target Machines (CPU/GPU)

	V100 (Volta)	H100 (Hopper)	A64FX
Number of SM	80	144	
FP64 Cores/GPU (CPU)	2560	9216	48
FP32 Cores/GPU (CPU)	5120	18432	48
Peak FP64 [TFlops] w/ Tensor Cores	7	26 51	3.07
Peak FP32 [TFlops] w/ Tensor Cores	14	51 756	6.14
Memory BW [TB/s]	0.90	2	1
PCIe [GB/s] NVLinks [GB/s]	(Gen3) 32 —	(Gen5) 128 600	
System	Cygnus 4× V100/node total 80 nodes GPU: PCI	Pegasus 1× H100 /node total 120 nodes e edition, A64FX: Fug	Fugaku 1× A64FX/node total 158,976 nodes gaku normal mode (2.0GHz)

Cygnus & Pegasus: Center for Computational Sciences, University of Tsukuba Supercomputer "Fugaku": RIKEN Center for Computational Science

https://www.r-ccs.riken.jp/fugaku/about/

smoother: SAP from QWS library https://github.com/RIKEN-LQCD/qws

- solving time: 169 sec. (mixed prec. BiCGStab) \Rightarrow 21.4 sec [216 nodes]
- good scaling
- QWS is really efficient: SAP ~ +800 GFlops/node (i.e., > 13%)

cf. Ishikawa, K.I., Matsufuru, PoS LATTICE2021 (2022) 278

Center for Computational Sciences

https://www.ccs.tsukuba.ac.jp/supercomputer/

some tunable parameters: not optimized

weak scalings of matrix vector multiplication [single prec.] 4 GPU/node

strong scaling of the MG solve configuration:

 $32^3 \times 64$ lat., $M_{\pi} = 156$ MeV

S.Aoki et al. [PACS-CS] Phys. Rev. D 79, 034503 (2009)

solving time: 393.3 sec. (mixed prec. BiCGStab) \Rightarrow 216.8 sec. [4 GPU]

node sec.

P/R: Prolongation and Restriction

https://www.ccs.tsukuba.ac.jp/supercomputer/

better

1 GPU/node

 $32^3 \times 64$ lat., $M_{\pi} = 156$ MeV S.Aoki et al. [PACS-CS] Phys. Rev. D 79, 034503 (2009)

solving time: 484 sec. (mixed prec. BiCGStab) \Rightarrow 163 sec. [4 GPU] solving time: 147 sec. (mixed prec. BiCGStab) \Rightarrow 38.3 sec. [64 GPU]

Some attempts but not drastic accelerations so far

S.D.Cohen et al., lattice 2011; P. Boyle, 1402.2085; R. Brower et al. PRD102 (2020) 094517; P. Boyle and A. Yamaguchi, 2103.05034; P. Boyle 2409.03904;

Real part of the spectrum is not positive definite

We usually use a CG solver with $D^{\dagger}D$

Towards Domainwall fermion

Towards Domainwall fermion

Spectrum?

spectrum of Moebuis domainwall operator (low and high ends): 32³x16x12

spectrum of Moebuis domainwall operator (low and high ends): 32³x16x12

I. Kanamori: German-Japanese seminar 2024

Summary and Outlook

- Bridge++ has an efficient implementation of multigrid solver for Wilson (Clover) fermion on Fugaku
- GPU version: implemented with OpenACC
- Domainwall fermion: on going

Outlook

- GPU: CUDA version
- Domainwall fermion
 - Investigation of the spectrum may help?
 - Block version may save us? P. Boyle

Acknowledgments

- Computational resource: Wisteria, Cygnus & Pegasus (through Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba), Fugaku (RIKEN Center for Computational Science, ra000001)
- Grants: JSPS KAKENHI(20K03961, 19K03837)
- Configurations: Japan Lattice Data Grid, JLQCD collaboration