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Introduction

▶ Scattering amplitudes are inherently Minkowskian observables. Only Euclidean
correlators are calculable in lattice QCD. Analytic continuation is needed to real
time. Numerically ill-posed problem.

▶ Scattering amplitudes can be extracted from energy levels in large but finite
volume. Energy levels can be calculated from Eucliden correlators. More theory
needs to be developed every time a new multi-particle threshold is opened.
M. Luscher, Commun. Math. Phys. 105 (1986), 153-188

M. Luscher, Nucl. Phys. B 354 (1991), 531-578

C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Nucl. Phys. B 727 (2005), 218-243

M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90 (2014) no.11, 116003

[...]

▶ Approximate scattering amplitudes as a linear combination of Euclidean
correlators sampled at discrete times.
J. C. A. Barata and K. Fredenhagen, Commun. Math. Phys. 138 (1991), 507-520

J. Bulava and M. T. Hansen, Phys. Rev. D 100 (2019) no.3, 034521

https://inspirehep.net/literature/231480
https://inspirehep.net/literature/300613
https://inspirehep.net/literature/687104
https://inspirehep.net/literature/1312380
https://inspirehep.net/literature/302471
https://inspirehep.net/literature/1727182


An analogy: spectral densities

M. Hansen, A. Lupo and N. Tantalo, Phys. Rev. D 99, no.9, 094508 (2019)

William Jay, Lattice24 plenary talk (see also references therein)

M. Bruno, L. Giusti and M. Saccardi, [arXiv:2407.04141 [hep-lat]].
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Davier-Hoecker-Malaescu-Zhang, 2019

M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, EurPhysJ. C80, no.3, 241 (2020).

C(t) =

∫
d3x ⟨jk (t,x)jk (0)⟩=

∫ ∞

0
dE e−tE ρ(E)

Euclidean correlator Spectral density (∝ R-ratio)

https://inspirehep.net/literature/1725157
https://conference.ippp.dur.ac.uk/event/1265/contributions/7077/
https://inspirehep.net/literature/2804785
https://inspirehep.net/literature/1747772


C(t) =

∫
d3x ⟨jk (t,x)jk (0)⟩=

∫ ∞

0
dE e−tE ρ(E)

Euclidean correlator Spectral density (∝ R-ratio)

1. Target smeared spectral density ρ(E)= lim
σ→0+

∫
dE ′Kσ(E

′−E)ρ(E ′) .

The smearing kernel must be smooth with lim
σ→0

Kσ(E)= δ(E) .

2. Approximate of smearing kernel Kσ(E)≃Pσ,ϵ(e
−τE )=

N∑
n=1

wσ,ϵ
n e−nτE ,

with given precision ∥Kσ(E)−Pσ,ϵ(e
−τE )∥<ϵ .

3. Approximation formula ρ(E)= lim
σ→0+

lim
ϵ→0+

N(ϵ)∑
n=1

wσ,ϵ
n eτEC(nτ)
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Can we do anything similar for scattering amplitudes?



Scattering amplitudes
f̌1

f̌2

f̌M

f̌M+1

f̌M+2

f̌M+N
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= lim
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∫ [∏
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d3pA

(2π)3
f̌
(∗)
A (pA)

]∫ [∏
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dωA
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]
K̂σ(ω,p) ρc (ω,p)
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lim
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]
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Approximation formula f̌1
f̌2

f̌M

f̌M+1
f̌M+2

f̌M+N


c

= lim
σ→0+

lim
ϵ→0+

∑
n1,n2···≥1

b≥0

wσ,ϵ
n,b

∫ [∏
A

d3pA

(2π)3

]
Υ̂b(nτ ;p) Ĉc (nτ ;p)

■ Euclidean correlator:

Ĉc (s;p)= ⟨Ω|ϕ̂(pM+1)e
−sM+NH ···ϕ̂(pM+N)e

−sMH ϕ̂(pM)† ···e−s1H ϕ̂(p1)
†|Ω⟩c

■ Kinematic function:

Υ̂b(s;p)= [∆(p)]b h̃(∆(p))exp


M∑

A=1

sA

A∑
B=1

E(pB)+

M+N−1∑
A=M+1

sA

A∑
B=M+1

E(pB)


Violation of asympt. energy conservation: ∆(p)=

{∑M+N
A=M+1−

∑M
A=1

}
E(pA).

h̃(∆) auxiliary function: smooth, compact support, h̃(0)= 1.



Approximation formula f̌1
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c

= lim
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n1,n2···≥1

b≥0

wσ,ϵ
n,b

∫ [∏
A

d3pA

(2π)3

]
Υ̂b(nτ ;p) Ĉc (nτ ;p)

■ Coefficients of polynomial approximation of smearing kernels:

Kσ(ω,∆) ≃ Pσ,ϵ(e
−τω ,∆) =

∑
n1,n2···≥1

b≥0

wσ,ϵ
n,b

[∏
A

(
e−τωA

)nA ]∆b

∥∥Kσ(ω,∆)−Pσ,ϵ(e
−τω ,∆)

∥∥<ϵ

Theorem. For every r > 0, two constants A,Br (independent of ϵ and σ) exist such that∣∣∣∣∣ −approx(σ,ϵ)

∣∣∣∣∣ < Aϵ+Brσ
r

assuming that the wave functions have non-overlapping velocities [not essential].



Approximation formula f̌1
f̌2

f̌M

f̌M+1
f̌M+2

f̌M+N


c

= lim
σ→0+

lim
ϵ→0+

∑
n1,n2···≥1

b≥0

wσ,ϵ
n,b

∫ [∏
A

d3pA

(2π)3

]
Υ̂b(nτ ;p) Ĉc (nτ ;p)
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b≥0

wσ,ϵ
n,b

[∏
A

(
e−τωA

)nA ]∆b

∥∥Kσ(ω,∆)−Pσ,ϵ(e
−τω ,∆)

∥∥<ϵ

What I am not telling you:

▶ What does the smearing kernel look like?

▶ What norm do we need to choose?

See paper or backup slides.



Approximation formula

 f̌1
f̌2

f̌M

f̌M+1
f̌M+2

f̌M+N


c

= lim
σ→0+

lim
ϵ→0+

∑
n1,n2···≥1

b≥0

wσ,ϵ
n,b

∫ [∏
A

d3pA

(2π)3

]
Υ̂b(nτ ;p) Ĉc (nτ ;p)

▶ Smaller ϵ ⇒ better approximation of Haag-Ruelle kernel ⇒ larger values of n ⇒
larger statistical noise.

▶ Smaller σ ⇒ Haag-Ruelle kernel more peaked ⇒ harder to approximate ⇒ larger
values of n ⇒ larger statistical noise.

▶ Also recall: Υh(nτ ;p) increases exponentially with n.

▶ Optimization problem: smaller ϵ and σ means larger statistical errors, larger ϵ and
σ means larger systematic error. One could design a strategy based on HLT to
minimize total error:

A[w ] =
∥∥Kσ(ω,∆)−Pσ,ϵ(e

−τω ,∆)
∥∥2 B[w ] =

∑
n,b,n′,b′

wσ,ϵ
n,b ⟨⟨Cn,bCn′,b′ ⟩⟩cw

σ,ϵ
n′,b′



Approximation formula

 f̌1
f̌2

f̌M

f̌M+1
f̌M+2

f̌M+N


c

= lim
σ→0+

lim
ϵ→0+

∑
n1,n2···≥1

b≥0

wσ,ϵ
n,b

∫ [∏
A

d3pA

(2π)3

]
Υ̂b(nτ ;p) Ĉc (nτ ;p)

▶ A finite-volume estimator is obtained trivially by replacing

∫
d3pA

(2π)3
with

1

L3

∑
pA

.

If coefficients wn,b are kept fixed as the volume is varied, then the L→+∞ limit
is approached exponentially fast. Having Schwartz wave functions is essential for
this step.

▶ The continuum limit of the estimator can be understood in terms of Symanzik
effective theory.

▶ In this approach, the L→∞ and a→ 0 limits must be taken before the ϵ→ 0 and
σ→ 0 limits. In particular τ cannot be identified with the lattice spacing. For the
opposit approach, see Barata and Fredenhagen.



Conclusions and outlook

▶ We have derived an approximation for scattering amplitudes as a linear
combination of Euclidean correlators sampled at discrete times.

▶ This formula provides the blueprints for a potentially viable numerical strategy.

▶ Our approximation can be calculated from finite-volume correlators and the
infinite-volume limit is approached exponentially fast.

▶ Whether statistical and systematic errors are under control in typical QCD
simulations remains to be seen.

▶ Recent algorithmic methods (e.g. Hansen-Lupo-Tantalo), which have been
successful in approximations of spectral densities, can be adapted to this problem.
Other approaches are also available.
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Talk given at CERN workshop, July 2024



Introduction

I How do we calculate hadron scattering amplitude from Quantum
Chromodynamics? In principle...

p1

p2

pM

pM+1

pM+2

pM+N

/ lim
p0!±E(p)

"
Y

A

(p2A�m2)

#
h⌦|T�̃(pM+1)···�̃(pM+N)�̃(pM)† ···�̃(p1)†|⌦i

I Numerical lattice QCD is the only known tool which allows the calculation of
observables in QCD at the nonperturbative level.

I Only Euclidean correlators are calculable in lattice QCD. Analytic continuation is
needed to real time. Numerically ill-posed problem.

I Find another way...



Introduction

I Scattering amplitudes can be extracted from energy levels in large but finite
volume. Energy levels can be calculated from Eucliden correlators. More theory
needs to be developed every time a new multi-particle threshold is opened.
M. Luscher, Commun. Math. Phys. 105 (1986), 153-188

M. Luscher, Nucl. Phys. B 354 (1991), 531-578

C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Nucl. Phys. B 727 (2005), 218-243

M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90 (2014) no.11, 116003

[...]

I Approximate scattering amplitudes as a linear combination of Euclidean
correlators sampled at discrete times.
J. C. A. Barata and K. Fredenhagen, Commun. Math. Phys. 138 (1991), 507-520

J. Bulava and M. T. Hansen, Phys. Rev. D 100 (2019) no.3, 034521
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Theoretical background

Haag-Ruelle scattering theory



t

t

t

(1,vN) (1,v1)

x

x0

I Black lines = classical trajectories.

I Allow velocity indetermination.

I Gray regions = cones of classical
trajectories.

I Green/blue regions = position of
particle at time t.

p20 =
p

m2+p2

p

p0

I Pink line: p2 =m2

I Black dots: energy-momentum of
particle.

I Allow momentum indetermination.

I Black lines: allowed values for
energy-momentum.

f̃ tA(p)= eit[p0�E(p)]⇣A(p0�E(p)) f̌A(p)

I f̌A(p)= asymptotic particle wave function and E(p)=
p

m2+p2.

I ⇣A(!) cuts o↵ multi-particle states. ⇣A(!) smooth and compact support, ⇣A(0)= 1.

I Support of f̃ tA(p) intersects spectrum of P only on 1-particle mass shell.



t

t

t

(1,vN) (1,v1)

x

x0

I Black lines = classical trajectories.

I Allow velocity indetermination.

I Gray regions = cones of classical
trajectories.

I Green/blue regions = position of
particle at time t.

p20 =
p

m2+p2

p

p0

I Pink line: p2 =m2

I Black dots: energy-momentum of
particle.

I Allow momentum indetermination.

I Black lines: allowed values for
energy-momentum.

f̃ tA(p)= eit[p0�E(p)]⇣A(p0�E(p)) f̌A(p)

I f̌A(p)= asymptotic particle wave function and E(p)=
p

m2+p2.

I ⇣A(!) cuts o↵ multi-particle states. ⇣A(!) smooth and compact support, ⇣A(0)= 1.

I Support of f̃ tA(p) intersects spectrum of P only on 1-particle mass shell.



t

t

t

(1,vN) (1,v1)

x

x0

I Black lines = classical trajectories.

I Allow velocity indetermination.

I Gray regions = cones of classical
trajectories.

I Green/blue regions = position of
particle at time t.

p20 =
p

m2+p2

p

p0

I Pink line: p2 =m2

I Black dots: energy-momentum of
particle.

I Allow momentum indetermination.

I Black lines: allowed values for
energy-momentum.

f̃ tA(p)= eit[p0�E(p)]⇣A(p0�E(p)) f̌A(p)

I f̌A(p)= asymptotic particle wave function and E(p)=
p

m2+p2.

I ⇣A(!) cuts o↵ multi-particle states. ⇣A(!) smooth and compact support, ⇣A(0)= 1.

I Support of f̃ tA(p) intersects spectrum of P only on 1-particle mass shell.



| out(t)i =

Z
d4xN f tN(xN)�(xN)

† ···
Z

d4x1 f
t
1 (x1)�(x1)

† |⌦i

t

(1,vN) (1,v1)

x

x0

I Gray regions = cones of classical
trajectories.

I Green/blue regions scale with t.

I f tA(x) is localized in green/blue
regions.

I Interaction between particles
decreases with t.

p20 =
p

m2+p2

p

p0

I Pink regions = spectrum of P.

I Green/blue regions intersect
spectrum of P on 1-particle mass
shell.

I f̃ tA(p) has support in green/blue
regions.

f̃ tA(p)= eit[p0�E(p)]⇣A(p0�E(p)) f̌A(p)

I f̌A(p)= asymptotic particle wave function and E(p)=
p

m2+p2.

I ⇣A(!) cuts o↵ multi-particle states. ⇣A(!) smooth and compact support, ⇣A(0)= 1.

I Support of f̃ tA(p) intersects spectrum of P only on 1-particle mass shell.



| out(t)i =

Z
d4pN
(2⇡)4

f̃ tN(pN)�̃(pN)
† ···

Z
d4p1
(2⇡)4

f̃ t1 (p1)�̃(p1)
† |⌦i

t

(1,vN) (1,v1)

x

x0

I Gray regions = cones of classical
trajectories.

I Green/blue regions scale with t.

I f tA(x) is localized in green/blue
regions.

I Interaction between particles
decreases with t.

p20 =
p

m2+p2

p

p0

I Pink regions = spectrum of P.

I Green/blue regions intersect
spectrum of P on 1-particle mass
shell.

I f̃ tA(p) has support in green/blue
regions.

f̃ tA(p)= eit[p0�E(p)]⇣A(p0�E(p)) f̌A(p)

I f̌A(p)= asymptotic particle wave function and E(p)=
p

m2+p2.

I ⇣A(!) cuts o↵ multi-particle states. ⇣A(!) smooth and compact support, ⇣A(0)= 1.

I Support of f̃ tA(p) intersects spectrum of P only on 1-particle mass shell.



| out(t)i =

Z
d4pN
(2⇡)4

f̃ tN(pN)�̃(pN)
† ···

Z
d4p1
(2⇡)4

f̃ t1 (p1)�̃(p1)
† |⌦i

t

(1,vN) (1,v1)

x

x0

I Gray regions = cones of classical
trajectories.

I Green/blue regions scale with t.

I f tA(x) is localized in green/blue
regions.

I Interaction between particles
decreases with t.

p20 =
p

m2+p2

p

p0

I Pink regions = spectrum of P.

I Green/blue regions intersect
spectrum of P on 1-particle mass
shell.

I f̃ tA(p) has support in green/blue
regions.

f̃ tA(p)= eit[p0�E(p)]⇣A(p0�E(p)) f̌A(p)

I f̌A(p)= asymptotic particle wave function and E(p)=
p

m2+p2.

I ⇣A(!) cuts o↵ multi-particle states. ⇣A(!) smooth and compact support, ⇣A(0)= 1.

I Support of f̃ tA(p) intersects spectrum of P only on 1-particle mass shell.



| out(t)i =

Z
d4pN
(2⇡)4

f̃ tN(pN)�̃(pN)
† ···

Z
d4p1
(2⇡)4

f̃ t1 (p1)�̃(p1)
† |⌦i

t

(1,vN) (1,v1)

x

x0 p20 =
p

m2+p2

p

p0

f̃ tA(p)= eit[p0�E(p)]⇣A(p0�E(p)) f̌A(p)

I f̌A(p)= asymptotic particle wave function and E(p)=
p

m2+p2.

I ⇣A(!) cuts o↵ multi-particle states. ⇣A(!) smooth and compact support, ⇣A(0)= 1.

I Support of f̃ tA(p) intersects spectrum of P only on 1-particle mass shell.



Haag-Ruelle scattering theory

| out(t)i=
Y

A

Z
d4pA
(2⇡)4

f̃ tA(pA)�̃(pA)
† |⌦i

t!+1
=

Y

A

Z
d3pA

(2⇡)3
f̌A(pA)a

†
out(pA) |⌦i+O(|t|�1)

I f̃ tA(p)= eit[p0�E(p)]⇣A(p0�E(p)) f̌A(p)

I Error is O(|t|�1) for non-overlapping velocities, otherwise O(|t|�1/2).

I a†out(p) are standard creation operators:

[aout(p),a†out(p
0)]= (2⇡)3�3(p�p0) [aout(p),aout(p0)]= 0

[P,a†out(p)]= pa†out(p) [H,a†out(p)]=E(p)a†out(p)



Approximation formula for scattering amplitudes

Rough sketch of derivation



Scattering amplitude
⌘A =+1 ⌘A =�1

f̌1
f̌2

f̌M

f̌M+1

f̌M+2

f̌M+N

= lim
t!+1

h out(t)| in(�t)i
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I Wildly oscillating phase for t!+1.

I Not good for numerics.

I Cancallation of regions with
P

A⌘A[p
0
A�E(pA)] 6=0.

I Can we achieve the same e↵ect in a di↵erent way? Some mathematical trickery...
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Introduce two auxiliary functions:

I �(t) Schwartz with unit integral and closed support in (0,+1);

I h(t) Schwartz with unit integral.

lim
�!0+

Z
dtds�(t)h(s)

D
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⇣
t
2��s

⌘��� in

⇣
� t

2��s
⌘E
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Z +1
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D
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⇣
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⌘��� in

⇣
� t
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= h out(+1)| in(�1)i



Scattering amplitude (2)
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⌅ �̃ regularizes the wildly-oscillating phase factor and selects the desired time-
ordering. It must be complex!

⌅ h̃(�) can be chosen with compact and arbitrarily narrow support around �=0.
It cuts away contributions characterized by non-zero violations of the asymp-
totic energy conservation.

⌅ Wightman function in momentum space ' spectral density.
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Wightman function ' spectral density

h⌦|�̃(pM+1) �̃(pM+2) ··· �̃(pM+N) �̃(pM)† ··· �̃(p2)
† �̃(p1)

†|⌦i

E1 = p01

E2 = p01 +p02

EM�1 = p01 + ···+p0M�1

EM = p01 + ···+p0M

EM+1 = p0M+1

EM+2 = p0M+1+p0M+2

= 2⇡�(EM+N�EM)

⇥ h⌦|�̂(pM+1)2⇡�(H�EM+1)···�̂(pM+N)2⇡�(H�EM)�̂(pM)···2⇡�(H�E1)�̂(p1)|⌦i

definitions: �̂(p)=
Z

d3x e�ipx�(0,x)

!A = EA� [EA]on-shell

= 2⇡�(EM+N�EM)⇢(!,p)
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Haag-Ruelle kernel K�(!,�) smears the spectral density in the energy variable !. The
parameter � plays the role of the smearing radius.

K�(!,�)= �̃

✓
2!M ��

2�

◆
⇣1 (!1)

"
M�1Y

A=2

⇣A(!A�!A�1)

#
⇣M (!M�!M�1)

⇥⇣⇤M+1(!M+1)

"
M+N�1Y

A=M+2

⇣⇤A (!A�!A�1)

#
⇣⇤M+N (!M�!M+N�1��)

Violation of asymptotic energy conservation: �(p)=
X

A

⌘AE(pA).
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Approximation is obtained by replacing the Haag-Ruelle kernel with a polynomial in
the variables e�⌧! and �:

K�(!,�) �! P�,✏(e
�⌧! ,�)=
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n1,n2···�1

X
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???

< ✏

Integrating P�,✏(e
�⌧! ,�) against the spectral density yields the Euclidean correlator!
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⌅ Euclidean correlator:

Ĉc (s;p)= h⌦|�̂(pM+1)e
�sM+NH ···�̂(pM+N)e

�sMH �̂(pM)† ···e�s1H �̂(p1)
†|⌦ic

⌅ Kinematic function:

⌥h(s;p)= h̃(�(p))exp

8
<

:
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sA

AX
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E(pB)+
M+N�1X
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B=M+1

E(pB)
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=

;



Which norm?

X

k↵k1=N!
0bNp

�̄b
Z

K

"
M+N�1Y

A=1

d!A

2⇡

#
d�e⌧

P
A!A

���D↵
!@b

�

⇥
K�(!,�)�P�,✏(e

�⌧! ,�)
⇤���

2
< ✏2

I One can choose some linear combinations of weighted L2 norm for various
derivatives.

I The integration domain K is completely determined by kinematics.

I The number of derivatives that one needs to control (N! , Np) depend on how
singular the spectral density is.

I The l.h.s. is a quadratic function of the polynomial coe�cients w�,✏
n,b . Minimizing

the l.h.s. can be done by solving a system of linear equations.

I Some speculative argument suggests N! =M+N and Np =0. We need to
understand this better...



Summary
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approx(�,✏)=
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w�,✏
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d3pA

(2⇡)3
f̌ (⇤)A (pA)

�
[�(p)]b⌥h(n⌧ ;p)Ĉc (n⌧ ;p)

Theorem. For every r > 0, two constants A,Br (independent of ✏ and �) exist such
that ������

�approx(�,✏)

������
< A✏+Br�

r

assuming that the wave functions have non-overlapping velocities [not essential].



Approximation formula for scattering amplitudes

How can we use it?



2

6664

f̌1
f̌2

f̌M

f̌M+1
f̌M+2

f̌M+N

3

7775

c

= lim
�!0+

lim
✏!0+

X

n1,n2···�1

X

b�0

w�,✏
n,b Cn,b

Cn,b =
Z Y

A

d3pA

(2⇡)3
f̌ (⇤)A (pA)

�
[�(p)]b⌥h(n⌧ ;p)Ĉc (n⌧ ;p)

I Smaller ✏ ) better approximation of Haag-Ruelle kernel ) larger values of n )
larger statistical noise.

I Smaller � ) Haag-Ruelle kernel more peaked ) harder to approximate ) larger
values of n ) larger statistical noise.

I Also recall: ⌥h(n⌧ ;p) increases exponentially with n.

I Optimization problem: smaller ✏ and � means larger statistical errors, larger ✏ and
� means larger systematic error. One could design a strategy based on HLT to
minimize total error:

A[w ] =
��K�(!,�)�P�,✏(e

�⌧! ,�)
��2
???

B[w ] =
X

n,b,n0,b0
w�,✏
n,b hhCn,bCn0,b0 iicw

�,✏
n0,b0
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I A finite-volume estimator is obtained trivially by replacing

Z
d3pA

(2⇡)3
with

1

L3

X

pA

.

If coe�cients wn,b are kept fixed as the volume is varied, then the L!+1 limit
is approached exponentially fast. Having Schwartz wave functions is essential for
this step.

I The continuum limit of the estimator can be understood in terms of Symanzik
e↵ective theory.

I In this approach, the L!1 and a! 0 limits must be taken before the ✏! 0 and
�! 0 limits. In particular ⌧ cannot be identified with the lattice spacing. For the
opposit approach, see Barata and Fredenhagen.



Conclusions and outlook

I We have derived an approximation for scattering amplitudes as a linear
combination of Euclidean correlators sampled at discrete times.

I This formula provides the blueprints for a potentially viable numerical strategy.

I Our approximation can be calculated from finite-volume correlators and the
infinite-volume limit is approached exponentially fast.

I Whether statistical and systematic errors are under control in typical QCD
simulations remains to be seen.

I Recent algorithmic methods (e.g. Hansen-Lupo-Tantalo), which have been
successful in approximations of spectral densities, can be adapted to this problem.

I The class of operators used to approximate asymptotic states can be generalized
by relaxing the constraint that f̃ t(p) must have compact support. This may make
the numerics easier.


