

German-Japanese Workshop 2024, Mainz

Extracting scattering amplitudes from Euclidean correlators

work in collaboration with Nazario Tantalo based on [arXiv:2407.02069](https://arxiv.org/abs/2407.02069)

Agostino Patella Humboldt-Universität zu Berlin, DESY Zeuthen

Introduction

- ▶ Scattering amplitudes are inherently Minkowskian observables. Only Euclidean correlators are calculable in lattice QCD. Analytic continuation is needed to real time. Numerically ill-posed problem.
- ▶ Scattering amplitudes can be extracted from energy levels in large but finite volume. Energy levels can be calculated from Eucliden correlators. More theory needs to be developed every time a new multi-particle threshold is opened. [M. Luscher, Commun. Math. Phys.](https://inspirehep.net/literature/231480) 105 (1986), 153-188 [M. Luscher, Nucl. Phys. B](https://inspirehep.net/literature/300613) 354 (1991), 531-578 [C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Nucl. Phys. B](https://inspirehep.net/literature/687104) 727 (2005), 218-243 [M. T. Hansen and S. R. Sharpe, Phys. Rev. D](https://inspirehep.net/literature/1312380) 90 (2014) no.11, 116003 [...]
- ▶ Approximate scattering amplitudes as a linear combination of Euclidean correlators sampled at discrete times.
	- [J. C. A. Barata and K. Fredenhagen, Commun. Math. Phys.](https://inspirehep.net/literature/302471) 138 (1991), 507-520
	- [J. Bulava and M. T. Hansen, Phys. Rev. D](https://inspirehep.net/literature/1727182) 100 (2019) no.3, 034521

An analogy: spectral densities

[M. Hansen, A. Lupo and N. Tantalo, Phys. Rev. D](https://inspirehep.net/literature/1725157) 99, no.9, 094508 (2019) [William Jay, Lattice24 plenary talk \(see also references therein\)](https://conference.ippp.dur.ac.uk/event/1265/contributions/7077/) [M. Bruno, L. Giusti and M. Saccardi, \[arXiv:2407.04141 \[hep-lat\]\].](https://inspirehep.net/literature/2804785)

[M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, EurPhysJ. C80, no.3, 241 \(2020\).](https://inspirehep.net/literature/1747772)

$$
\mathcal{C}(t) = \int d^3x \, \langle j_k(t,x) j_k(0) \rangle = \int_0^\infty dE \, e^{-tE} \, \rho(E)
$$
\nEuclidean correlator

\nSpectral density (x R-ratio)

$$
\frac{C(t)}{\downarrow} = \int d^3x \, \langle j_k(t,x) j_k(0) \rangle = \int_0^\infty dE \, e^{-tE} \, \frac{\rho(E)}{\downarrow}
$$
\nEuclidean correlator

\nSpectral density (x R-ratio)

1. Target smeared spectral density

$$
\rho(E) = \lim_{\sigma \to 0^+} \int dE' K_{\sigma}(E'-E)\rho(E') .
$$

The smearing kernel must be smooth with

 $\lim_{\sigma \to 0} K_{\sigma}(E) = \delta(E)$.

$$
\frac{C(t)}{\downarrow} = \int d^3x \, \langle j_k(t,x) j_k(0) \rangle = \int_0^\infty dE \, e^{-tE} \, \frac{\rho(E)}{\downarrow}
$$
\nEuclidean correlator
\nSpectral density (\propto R-ratio)

1. Target smeared spectral density
$$
\rho(E) = \lim_{h \to 0} \rho(E)
$$

The smearing Kernel must be smooth with
$$
\lim_{\sigma \to 0} K_{\sigma}(E) = \delta(E).
$$

$$
\rho(E) = \lim_{\sigma \to 0^+} \int dE' K_{\sigma}(E'-E)\rho(E') .
$$

$$
\lim_{\sigma\to 0}K_{\sigma}(E)=\delta(E).
$$

2. Approximate of smearing kernel

$$
K_{\sigma}(E) \simeq P_{\sigma,\epsilon}(e^{-\tau E}) = \sum_{n=1}^{N} w_n^{\sigma,\epsilon} e^{-n\tau E} ,
$$

with given precision
$$
\|\mathcal{K}_{\sigma}(E) - P_{\sigma,\epsilon}(e)\|
$$

$$
||K_{\sigma}(E)-P_{\sigma,\epsilon}(e^{-\tau E})||<\epsilon.
$$

$$
\frac{C(t)}{\sqrt{C(t)}} = \int d^3x \langle j_k(t,x) j_k(0) \rangle = \int_0^\infty dE e^{-tE} \rho(E)
$$
\nEuclidean correlator

\nSpectral density (x R-ratio)

1. Target smeared spectral density
$$
\rho(E) = \lim_{\Delta E} \int dE' K_{\sigma}(E'-E)\rho(E)
$$

The smearing kernel must be smooth with

$$
H(E) = \lim_{\sigma \to 0^+} \int dE' K_{\sigma}(E'-E)\rho(E') .
$$

$$
\lim_{\sigma\to 0}K_{\sigma}(E)=\delta(E).
$$

2. Approximate of smearing kernel

$$
K_{\sigma}(E) \simeq P_{\sigma,\epsilon}(e^{-\tau E}) = \sum_{n=1}^{N} w_n^{\sigma,\epsilon} e^{-n\tau E} ,
$$

$$
||K_{\sigma}(E)-P_{\sigma,\epsilon}(e^{-\tau E})||<\epsilon.
$$

$$
f_{\rm{max}}
$$

with given precision

3. Approximation formula

$$
\rho(E) = \lim_{\sigma \to 0^+} \lim_{\epsilon \to 0^+} \sum_{n=1}^{N(\epsilon)} w_n^{\sigma, \epsilon} e^{\tau E} C(n\tau)
$$

Can we do anything similar for scattering amplitudes?

$$
\begin{bmatrix}\n\check{f}_{M+1} & \times & \times & \check{f}_1 \\
\check{f}_{M+2} & \times & \times & \check{f}_2 \\
\check{f}_{M+N} & \times & \times & \check{f}_M\n\end{bmatrix}_{c} = \lim_{\sigma \to 0^+} \lim_{\epsilon \to 0^+} \sum_{n_1, n_2, \dots \ge 1} w_{n,b}^{\sigma, \epsilon} \int \left[\prod_{A} \frac{d^3 \mathbf{p}_A}{(2\pi)^3} \right] \hat{\Upsilon}_b(n\tau; \mathbf{p}) \hat{\mathbf{C}}_c(n\tau; \mathbf{p})
$$

Euclidean correlator:

$$
\hat{C}_c(s;\boldsymbol{p}) = \langle \Omega | \hat{\phi}(\boldsymbol{p}_{M+1}) e^{-s_{M+N}H} \cdots \hat{\phi}(\boldsymbol{p}_{M+N}) e^{-s_MH} \hat{\phi}(\boldsymbol{p}_M)^{\dagger} \cdots e^{-s_1H} \hat{\phi}(\boldsymbol{p}_1)^{\dagger} | \Omega \rangle_c
$$

Kinematic function:

$$
\hat{\Upsilon}_b(s;\boldsymbol{p}) = [\Delta(\boldsymbol{p})]^b \tilde{h}(\Delta(\boldsymbol{p})) \exp \left\{ \sum_{A=1}^M s_A \sum_{B=1}^A E(\boldsymbol{p}_B) + \sum_{A=M+1}^{M+N-1} s_A \sum_{B=M+1}^A E(\boldsymbol{p}_B) \right\}
$$

Violation of asympt. energy conservation: $\Delta({\bm p})$ $=$ $\left\{\sum_{A=M+1}^{M+N}-\sum_{A=1}^{M}\right\} E({\bm p_A})$. $\tilde{h}(\Delta)$ auxiliary function: smooth, compact support, $\tilde{h}(0) = 1$.

$$
\begin{bmatrix}\n\check{f}_{M+1} & \times & \times & \check{f}_{\lambda} \\
\check{f}_{M+2} & \times & \times & \check{f}_{\lambda} \\
\check{f}_{M+N} & \times & \times & \check{f}_{M}\n\end{bmatrix}_{c} = \lim_{\sigma \to 0^{+}} \lim_{\epsilon \to 0^{+}} \sum_{n_{1}, n_{2} \cdots \geq 1} w_{n,b}^{\sigma,\epsilon} \int \left[\prod_{A} \frac{d^{3} p_{A}}{(2\pi)^{3}} \right] \hat{\Upsilon}_{b}(n\tau;p) \hat{\Upsilon}_{c}(n\tau;p)
$$

Coefficients of polynomial approximation of smearing kernels:

$$
K_{\sigma}(\omega,\Delta) \simeq P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta) = \sum_{\substack{n_1,n_2\cdots\geq 1\\b\geq 0}} w_{n,b}^{\sigma,\epsilon} \left[\prod_{A} (e^{-\tau\omega_A})^{n_A} \right] \Delta^{b}
$$

$$
||K_{\sigma}(\omega,\Delta) - P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta)|| < \epsilon
$$

Theorem. For every $r > 0$, two constants A, B_r (independent of ϵ and σ) exist such that

$$
\left|\bigotimes_{k\in\mathbb{Z}}\bigcirc\bigotimes_{k\in\mathbb{Z}}\text{-approx}(\sigma,\epsilon)\right| < A\epsilon + B_r\sigma^r
$$

assuming that the wave functions have non-overlapping velocities [not essential].

$$
\begin{bmatrix}\n\check{f}_{M+1} & \times & \times & \check{f}_{M+2} \\
\check{f}_{M+2} & \times & \times & \check{f}_{M}\n\end{bmatrix}_{c} = \lim_{\sigma \to 0^{+}} \lim_{\epsilon \to 0^{+}} \sum_{n_{1}, n_{2} \dots \geq 1} w_{n,b}^{\sigma,\epsilon} \int \left[\prod_{A} \frac{d^{3} p_{A}}{(2\pi)^{3}} \right] \hat{\Upsilon}_{b}(n\tau;p) \hat{\mathcal{L}}_{c}(n\tau;p)
$$

Coefficients of polynomial approximation of smearing kernels:

$$
K_{\sigma}(\omega,\Delta) \simeq P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta) = \sum_{\substack{n_1,n_2\cdots\geq 1\\b\geq 0}} w_{n,b}^{\sigma,\epsilon} \left[\prod_{A} (e^{-\tau\omega_A})^{n_A} \right] \Delta^{b}
$$

$$
||K_{\sigma}(\omega,\Delta) - P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta)|| < \epsilon
$$

What I am not telling you:

- ▶ What does the smearing kernel look like?
- ▶ What norm do we need to choose?

See paper or backup slides.

$$
\begin{bmatrix}\n\check{f}_{M+1} & \times & \times & \check{f}_{\lambda} \\
\check{f}_{M+2} & \times & \times & \check{f}_{\lambda} \\
\check{f}_{M+N} & \times & \times & \check{f}_{M}\n\end{bmatrix}_{c} = \lim_{\sigma \to 0^{+}} \lim_{\epsilon \to 0^{+}} \sum_{n_{1}, n_{2} \cdots \geq 1} w_{n,b}^{\sigma,\epsilon} \int \left[\prod_{A} \frac{d^{3} p_{A}}{(2\pi)^{3}} \right] \hat{\Upsilon}_{b}(n\tau;p) \hat{\Upsilon}_{c}(n\tau;p)
$$

- ▶ Smaller $\epsilon \Rightarrow$ better approximation of Haag-Ruelle kernel \Rightarrow larger values of $n \Rightarrow$ larger statistical noise.
- **▶ Smaller** $\sigma \Rightarrow$ **Haag-Ruelle kernel more peaked** \Rightarrow **harder to approximate** \Rightarrow **larger** values of $n \Rightarrow$ larger statistical noise.
- Also recall: $\Upsilon_h(n\tau;\mathbf{p})$ increases exponentially with n.
- **▶** Optimization problem: smaller ϵ and σ means larger statistical errors, larger ϵ and σ means larger systematic error. One could design a strategy based on HLT to minimize total error:

$$
A[w] = \left\|K_{\sigma}(\omega, \Delta) - P_{\sigma, \epsilon}(e^{-\tau \omega}, \Delta)\right\|^2 \qquad B[w] = \sum_{n, b, n', b'} w_{n, b}^{\sigma, \epsilon} \langle\langle C_{n, b} C_{n', b'} \rangle\rangle_c w_{n', b'}^{\sigma, \epsilon}
$$

$$
\begin{bmatrix}\n\check{f}_{M+1} & \times & \times & \check{f}_{\lambda} \\
\check{f}_{M+2} & \times & \times & \check{f}_{\lambda} \\
\check{f}_{M+N} & \times & \times & \check{f}_{M}\n\end{bmatrix}_{c} = \lim_{\sigma \to 0^{+}} \lim_{\epsilon \to 0^{+}} \sum_{n_{1}, n_{2} \cdots \geq 1} w_{n,b}^{\sigma,\epsilon} \int \left[\prod_{A} \frac{d^{3} p_{A}}{(2\pi)^{3}} \right] \hat{\Upsilon}_{b}(n\tau;p) \hat{\Upsilon}_{c}(n\tau;p)
$$

A finite-volume estimator is obtained trivially by replacing $\int \frac{d^3 \bm{p}_A}{\sqrt{2}}$ $\frac{d^3 \bm{p}_A}{(2\pi)^3}$ with $\frac{1}{L^3}$ $\frac{1}{L^3}\sum_{n}$ pA .

If coefficients $w_{n,b}$ are kept fixed as the volume is varied, then the $L \rightarrow +\infty$ limit is approached exponentially fast. Having Schwartz wave functions is essential for this step.

- ▶ The continuum limit of the estimator can be understood in terms of Symanzik effective theory.
- ▶ In this approach, the $L \rightarrow \infty$ and $a \rightarrow 0$ limits must be taken before the $\epsilon \rightarrow 0$ and $\sigma \rightarrow 0$ limits. In particular τ cannot be identified with the lattice spacing. For the opposit approach, see Barata and Fredenhagen.

Conclusions and outlook

- \triangleright We have derived an approximation for scattering amplitudes as a linear combination of Euclidean correlators sampled at discrete times.
- \blacktriangleright This formula provides the blueprints for a potentially viable numerical strategy.
- ▶ Our approximation can be calculated from finite-volume correlators and the infinite-volume limit is approached exponentially fast.
- ▶ Whether statistical and systematic errors are under control in typical QCD simulations remains to be seen.
- \triangleright Recent algorithmic methods (e.g. Hansen-Lupo-Tantalo), which have been successful in approximations of spectral densities, can be adapted to this problem. Other approaches are also available.

Backup slides

Talk given at CERN workshop, July 2024

Introduction

 \blacktriangleright How do we calculate hadron scattering amplitude from Quantum Chromodynamics? In principle...

$$
\sum_{p_{M+2}}^{p_{M+2}}\sum_{k'}\sum_{p_M}\sum_{p_M}\sum_{\mu_0\rightarrow \pm E(\boldsymbol{\rho})}^{\mu_1}\left[\prod_{A}(p_A^2-m^2)\right]\langle\Omega|T\tilde{\phi}(p_{M+1})\cdots\tilde{\phi}(p_{M+N})\tilde{\phi}(p_M)^{\dagger}\cdots\tilde{\phi}(p_1)^{\dagger}|\Omega\rangle
$$

- \triangleright Numerical lattice QCD is the only known tool which allows the calculation of observables in QCD at the nonperturbative level.
- ▶ Only Euclidean correlators are calculable in lattice QCD. Analytic continuation is needed to real time. Numerically ill-posed problem.
- \blacktriangleright Find another way...

pM+1

Introduction

- \triangleright Scattering amplitudes can be extracted from energy levels in large but finite volume. Energy levels can be calculated from Eucliden correlators. More theory needs to be developed every time a new multi-particle threshold is opened. M. Luscher, Commun. Math. Phys. 105 (1986), 153-188 M. Luscher, Nucl. Phys. B 354 (1991), 531-578 C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Nucl. Phys. B 727 (2005), 218-243 M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90 (2014) no.11, 116003 [...]
- \blacktriangleright Approximate scattering amplitudes as a linear combination of Euclidean correlators sampled at discrete times.
	- J. C. A. Barata and K. Fredenhagen, Commun. Math. Phys. 138 (1991), 507-520
	- J. Bulava and M. T. Hansen, Phys. Rev. D 100 (2019) no.3, 034521

Outlook

Theoretical background Haag-Ruelle scattering theory

 \blacktriangleright Black lines = classical trajectories.

- **Pink line:** $p^2 = m^2$
- Black dots: energy-momentum of particle.

- \blacktriangleright Black lines = classical trajectories.
- \blacktriangleright Allow velocity indetermination.
- \triangleright Gray regions = cones of classical trajectories.

- **Pink line:** $p^2 = m^2$
- Black dots: energy-momentum of particle.
- \blacktriangleright Allow momentum indetermination.
- \blacktriangleright Black lines: allowed values for energy-momentum.

- \blacktriangleright Black lines = classical trajectories.
- \blacktriangleright Allow velocity indetermination.
- \triangleright Gray regions = cones of classical trajectories.
- Green/blue regions $=$ position of particle at time *t*.

- **Pink line:** $p^2 = m^2$
- Black dots: energy-momentum of particle.
- \blacktriangleright Allow momentum indetermination.
- I Black lines: allowed values for energy-momentum.

$$
|\Psi_{\text{out}}(t)\rangle = \frac{\int d^4x_N f_N^t(x_N) \phi(x_N)^{\dagger}}{\int d^4x_1 f_1^t(x_1) \phi(x_1)^{\dagger}} |\Omega\rangle
$$

- \blacktriangleright Gray regions = cones of classical trajectories.
- \blacktriangleright Green/blue regions scale with t .
- \blacktriangleright $f_A^t(x)$ is localized in green/blue regions.

$$
|\Psi_{\text{out}}(t)\rangle = \left[\int \frac{d^4 p_N}{(2\pi)^4} \tilde{f}_N^t(p_N) \tilde{\phi}(p_N)^\dagger \right] \cdots \left[\int \frac{d^4 p_1}{(2\pi)^4} \tilde{f}_1^t(p_1) \tilde{\phi}(p_1)^\dagger \right] |\Omega\rangle
$$

- \triangleright Gray regions = cones of classical trajectories.
- \blacktriangleright Green/blue regions scale with *t*.
- \blacktriangleright $f_A^t(x)$ is localized in green/blue regions.

- \blacktriangleright Pink regions = spectrum of *P*.
- \blacktriangleright Green/blue regions intersect spectrum of *P* on 1-particle mass shell.
- \blacktriangleright $\tilde{f}^t_A(p)$ has support in green/blue regions.

$$
|\Psi_{\text{out}}(t)\rangle = \left|\int \frac{d^4 p_N}{(2\pi)^4} \tilde{f}_N^t(p_N) \tilde{\phi}(p_N)^\dagger \right| \cdots \left|\int \frac{d^4 p_1}{(2\pi)^4} \tilde{f}_1^t(p_1) \tilde{\phi}(p_1)^\dagger \right| |\Omega\rangle
$$

- \triangleright Gray regions = cones of classical trajectories.
- \blacktriangleright Green/blue regions scale with *t*.
- \blacktriangleright $f_A^t(x)$ is localized in green/blue regions.
- \blacktriangleright Interaction between particles decreases with *t*.

- \blacktriangleright Pink regions = spectrum of *P*.
- \blacktriangleright Green/blue regions intersect spectrum of *P* on 1-particle mass shell.
- \blacktriangleright $\tilde{f}^t_A(p)$ has support in green/blue regions.

$$
\tilde{f}_A^t(p) = e^{it[p_0 - E(\boldsymbol{p})]} \zeta_A(p_0 - E(\boldsymbol{p})) \check{f}_A(\boldsymbol{p})
$$

- \blacktriangleright $\check{f}_{A}(\boldsymbol{p}) =$ asymptotic particle wave function and $E(\boldsymbol{p}) = \sqrt{m^2 + \boldsymbol{p}^2}.$
- $\blacktriangleright \zeta_A(\omega)$ cuts off multi-particle states. $\zeta_A(\omega)$ smooth and compact support, $\zeta_A(0) = 1$.
- ▶ Support of $\tilde{f}_A^t(p)$ intersects spectrum of P only on 1-particle mass shell.

Haag-Ruelle scattering theory

$$
|\Psi_{\text{out}}(t)\rangle = \prod_{A} \int \frac{d^4 p_A}{(2\pi)^4} \tilde{f}_A^t(p_A) \tilde{\phi}(p_A)^\dagger |\Omega\rangle
$$

$$
t \to \pm \infty \prod_{A} \int \frac{d^3 p_A}{(2\pi)^3} \tilde{f}_A(p_A) a_{\text{out}}^\dagger(p_A) |\Omega\rangle + O(|t|^{-\infty})
$$

$$
\blacktriangleright \tilde{f}_A^t(p) = e^{it[p_0 - E(p)]} \zeta_A(p_0 - E(p)) \tilde{f}_A(p)
$$

Frror is $O(|t|^{-\infty})$ for non-overlapping velocities, otherwise $O(|t|^{-1/2})$.

$$
\triangleright \quad a_{\text{out}}^{\dagger}(\boldsymbol{p}) \text{ are standard creation operators:}
$$
\n
$$
[a_{\text{out}}(\boldsymbol{p}), a_{\text{out}}^{\dagger}(\boldsymbol{p}')] = (2\pi)^3 \delta^3(\boldsymbol{p} - \boldsymbol{p}') \qquad [a_{\text{out}}(\boldsymbol{p}), a_{\text{out}}(\boldsymbol{p}')] = 0
$$
\n
$$
[\boldsymbol{P}, a_{\text{out}}^{\dagger}(\boldsymbol{p})] = \boldsymbol{p} a_{\text{out}}^{\dagger}(\boldsymbol{p}) \qquad [\boldsymbol{H}, a_{\text{out}}^{\dagger}(\boldsymbol{p})] = E(\boldsymbol{p}) a_{\text{out}}^{\dagger}(\boldsymbol{p})
$$

Approximation formula for scattering amplitudes Rough sketch of derivation

$$
=\lim_{t\to+\infty}\langle \Psi_{\text{out}}(t)|\Psi_{\text{in}}(-t)\rangle
$$

$$
= \lim_{t\to +\infty} \int \left[\prod_A \frac{d^4 p_A}{(2\pi)^4} \tilde{f}_A^{(*)}(\mathbf{p}_A) \zeta_A^{(*)} (p_A^0 - E(\mathbf{p}_A)) \right] e^{it \sum_A \eta_A [\mathbf{p}_A^0 - E(\mathbf{p}_A)]}
$$

 $\times \langle \Omega | \tilde{\phi}(p_{M+1}) \cdots \tilde{\phi}(p_{M+N}) \tilde{\phi}(p_M)^\dagger \cdots \tilde{\phi}(p_1)^\dagger | \Omega \rangle$

$$
= \lim_{t \to +\infty} \int \left[\prod_{A} \frac{d^4 p_A}{(2\pi)^4} \check{f}_A^{(*)}(\mathbf{p}_A) \zeta_A^{(*)}(\rho_A^0 - E(\mathbf{p}_A)) \right] \frac{e^{it \sum_A n_A [\rho_A^0 - E(\mathbf{p}_A)]}}{e^{it \sum_A n_A [\rho_A^0 - E(\mathbf{p}_A)]}} \\ \times \langle \Omega | \tilde{\phi}(\mathbf{p}_{M+1}) \cdots \tilde{\phi}(\mathbf{p}_{M+N}) \tilde{\phi}(\mathbf{p}_M)^{\dagger} \cdots \tilde{\phi}(\mathbf{p}_1)^{\dagger} | \Omega \rangle
$$

- \triangleright Wildly oscillating phase for $t \to +\infty$.
- \triangleright Not good for numerics.
- \blacktriangleright Cancallation of regions with $\sum_{A} \eta_A[p^0_A E(\mathbf{p}_A)] \neq 0$.
- \triangleright Can we achieve the same effect in a different way? Some mathematical trickery...

Introduce two auxiliary functions:

- $\blacktriangleright \Phi(t)$ Schwartz with unit integral and closed support in $(0,+\infty)$;
- \blacktriangleright $h(t)$ Schwartz with unit integral.

$$
\begin{aligned} &\lim_{\sigma\to0^+}\int dt\,ds\,\Phi(t)\,h(s)\Big\langle\Psi_{\text{out}}\Big(\frac{t}{2\sigma}-s\Big)\Big|\Psi_{\text{in}}\Big(-\frac{t}{2\sigma}-s\Big)\Big\rangle\\ &=\int ds\,h(s)\int_0^{+\infty}dt\,\Phi(t)\,\lim_{\sigma\to0^+}\Big\langle\Psi_{\text{out}}\Big(\frac{t}{2\sigma}-s\Big)\Big|\Psi_{\text{in}}\Big(-\frac{t}{2\sigma}-s\Big)\Big\rangle=\langle\Psi_{\text{out}}(+\infty)|\Psi_{\text{in}}(-\infty)\rangle\end{aligned}
$$

$$
= \lim_{\sigma \to 0^+} \int \left[\prod_A \frac{d^4 p_A}{(2\pi)^4} \tilde{f}_A^{(*)}(\mathbf{p}_A) \zeta_A^{(*)}(\rho_A^0 - E(\mathbf{p}_A)) \right] \tilde{h} \left(\sum_A \eta_A E(\mathbf{p}_A) \right) \tilde{\Phi} \left(\frac{1}{\sigma} \sum_A \eta_A [\rho_A^0 - E(\mathbf{p}_A)] \right) \times \langle \Omega | \tilde{\phi}(\rho_{M+1}) \cdots \tilde{\phi}(\rho_{M+N}) \tilde{\phi}(\rho_M)^\dagger \cdots \tilde{\phi}(\rho_1)^\dagger | \Omega \rangle
$$

 $\tilde{\Phi}$ regularizes the wildly-oscillating phase factor and selects the desired timeordering. It must be complex!

- $h(\Delta)$ can be chosen with compact and arbitrarily narrow support around $\Delta = 0$. It cuts away contributions characterized by non-zero violations of the asymptotic energy conservation.
	- Wightman function in momentum space \simeq spectral density.

Wightman function \simeq spectral density

$\langle \Omega | \tilde{\phi}(p_{M+1}) \quad \tilde{\phi}(p_{M+2}) \quad \cdots \quad \tilde{\phi}(p_{M+N}) \quad \tilde{\phi}(p_M)^\dagger \quad \cdots \quad \tilde{\phi}(p_2)^\dagger \quad \tilde{\phi}(p_1)^\dagger | \Omega \rangle$

Wightman function \simeq spectral density

$$
\varepsilon_{M} = p_1^0 + \dots + p_M^0
$$
\n
$$
\varepsilon_{M+1} = p_{M+1}^0
$$
\n
$$
\varepsilon_{M+2} = p_{M+1}^0 + p_{M+2}^0
$$
\n
$$
\left\{\n\begin{array}{c}\n\varepsilon_{M+1} = p_1^0 + \dots + p_{M-1}^0 \\
\varepsilon_{M-1} = p_1^0 + \dots + p_{M-1}^0 \\
\varepsilon_{M+1} = p_1^0 + \dots + p_{M-1}^0 \\
\varepsilon_{M+1} = p_1^0 + \dots + p_{M-1}^0\n\end{array}\n\right\} \xrightarrow{\varepsilon_{M+1} = p_1^0 + \dots + p_{M-1}^0} \begin{bmatrix}\n\varepsilon_{M+1} = p_1^0 + \dots + p_{M-1}^0 \\
\varepsilon_{M+2} = p_1^0 + \dots + p_{M-2}^0 \\
\varepsilon_{M+1} = p_1^0 + \dots + p_{M-2}^0 \\
\varepsilon_{M+2} = p_1^0 + \dots + p_{M-2}^0\n\end{bmatrix}
$$

Wightman function \simeq spectral density

$$
\varepsilon_{M} = p_1^0 + \dots + p_M^0
$$
\n
$$
\varepsilon_{M+1} = p_{M+1}^0
$$
\n
$$
\varepsilon_{M+2} = p_{M+1}^0 + p_{M+2}^0
$$
\n
$$
\left\{\n\begin{array}{c}\n\varepsilon_{M+1} = p_1^0 + \dots + p_{M-1}^0 \\
\varepsilon_{M-1} = p_1^0 + \dots + p_{M-1}^0 \\
\varepsilon_{M+2} = p_1^0 + \beta_{M+2}^0\n\end{array}\n\right\}\n\qquad\n\left\{\n\begin{array}{c}\n\varepsilon_2 = p_1^0 + \dots + p_{M-1}^0 \\
\varepsilon_2 = p_1^0 + p_2^0 \\
\varepsilon_2 = p_1^0 + \beta_{M-1}^0 \\
\varepsilon_2 = p_1^0 + \beta_{M-1}^0\n\end{array}\n\right\}.
$$

$$
=2\pi\delta(\mathcal{E}_{M+N}-\mathcal{E}_M)
$$

$$
\times \frac{\langle \Omega|\hat{\phi}(\mathbf{p}_{M+1})2\pi\delta(H-\mathcal{E}_{M+1})\cdots\hat{\phi}(\mathbf{p}_{M+N})2\pi\delta(H-\mathcal{E}_M)\hat{\phi}(\mathbf{p}_M)\cdots2\pi\delta(H-\mathcal{E}_1)\hat{\phi}(\mathbf{p}_1)|\Omega\rangle}{\langle \mathbf{p}_{M+1}\rangle 2\pi\delta(H-\mathcal{E}_M)\hat{\phi}(\mathbf{p}_{M+1})\cdots\hat{\phi}(\mathbf{p}_{M+N})2\pi\delta(H-\mathcal{E}_M)\hat{\phi}(\mathbf{p}_M)\cdots 2\pi\delta(H-\mathcal{E}_1)\hat{\phi}(\mathbf{p}_1)|\Omega\rangle}
$$

definitions:
$$
\hat{\phi}(\mathbf{p}) = \int d^3 \mathbf{x} e^{-i\mathbf{p}\mathbf{x}} \phi(0, \mathbf{x})
$$

$$
\omega_A = \mathcal{E}_A - [\mathcal{E}_A]_{\text{on-shell}}
$$

$$
=2\pi\delta(\mathcal{E}_{M+N}-\mathcal{E}_M)\rho(\omega,\mathbf{p})
$$

$$
\left[\begin{array}{c}\n\tilde{f}_{M+1} \\
\tilde{f}_{M+2} \\
\vdots \\
\tilde{f}_{M+N}\n\end{array}\right] \sum_{\mathbf{r}}\n\left(\begin{array}{c}\n\tilde{f}_{1} \\
\vdots \\
\tilde{f}_{M}\n\end{array}\right)_{c} = \lim_{\sigma \to 0^{+}}\int \left[\prod_{A}\frac{d^{3}\mathbf{p}_{A}}{(2\pi)^{3}}\tilde{f}_{A}^{(*)}(\mathbf{p}_{A})\right]\tilde{h}(\Delta(\mathbf{p}))\n\right] \times \int \left[\prod_{A}\frac{d\omega_{A}}{2\pi}\right] K_{\sigma}(\omega,\Delta(\mathbf{p})) \rho_{c}(\omega,\mathbf{p})
$$

$$
\left[\begin{array}{c}\n\tilde{f}_{M+1} \\
\tilde{f}_{M+2} \\
\vdots \\
\tilde{f}_{M+N}\n\end{array}\right] \sum_{\mathbf{r}}\n\left(\begin{array}{c}\n\tilde{f}_{1} \\
\vdots \\
\tilde{f}_{M}\n\end{array}\right)_{c} = \lim_{\sigma \to 0^{+}}\int \left[\prod_{A}\frac{d^{3}\mathbf{p}_{A}}{(2\pi)^{3}}\tilde{f}_{A}^{(*)}(\mathbf{p}_{A})\right]\tilde{h}(\Delta(\mathbf{p}))\n\right] \times \int \left[\prod_{A}\frac{d\omega_{A}}{2\pi}\right] K_{\sigma}(\omega,\Delta(\mathbf{p})) \rho_{c}(\omega,\mathbf{p})
$$

Haag-Ruelle kernel $K_{\sigma}(\omega,\Delta)$ smears the spectral density in the energy variable ω . The parameter σ plays the role of the smearing radius.

$$
K_{\sigma}(\omega,\Delta) = \tilde{\Phi}\left(\frac{2\omega_{M}-\Delta}{2\sigma}\right)\zeta_{1}(\omega_{1})\left[\prod_{A=2}^{M-1}\zeta_{A}(\omega_{A}-\omega_{A-1})\right]\zeta_{M}(\omega_{M}-\omega_{M-1})
$$

$$
\times \zeta_{M+1}^{*}(\omega_{M+1})\left[\prod_{A=M+2}^{M+N-1}\zeta_{A}^{*}(\omega_{A}-\omega_{A-1})\right]\zeta_{M+N}^{*}(\omega_{M}-\omega_{M+N-1}-\Delta)
$$

Violation of asymptotic energy conservation: $\Delta({\bm p}) \!=\! \sum_{\bm n}$ *A* $\eta_A E(\bm{p}_A)$.

$$
\left[\begin{array}{c}\n\tilde{f}_{M+1} \\
\tilde{f}_{M+2} \\
\vdots \\
\tilde{f}_{M+N}\n\end{array}\right] \sum_{\lambda \atop{\lambda}} \sum_{\tilde{f}_{M}\atop{\lambda}} \begin{bmatrix}\n\tilde{f}_{1} \\
\vdots \\
\tilde{f}_{M}\n\end{bmatrix}_{C}\n= \lim_{\sigma \to 0^{+}} \int \left[\prod_{A} \frac{d^{3} p_{A}}{(2\pi)^{3}} \tilde{f}_{A}^{(\ast)}(\mathbf{p}_{A})\right] \tilde{h}(\Delta(\mathbf{p}))
$$
\n
$$
\times \int \left[\prod_{A} \frac{d\omega_{A}}{2\pi}\right] K_{\sigma}(\omega, \Delta(\mathbf{p})) \rho_{c}(\omega, \mathbf{p})
$$

Approximation is obtained by replacing the Haag-Ruelle kernel with a polynomial in the variables $e^{-\tau\omega}$ and Δ :

$$
K_{\sigma}(\omega,\Delta) \quad \longrightarrow \quad P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta) = \sum_{n_1,n_2\cdots\geq 1}\sum_{b\geq 0}w_{n,b}^{\sigma,\epsilon}\left[\prod_{A}(e^{-\tau\omega_A})^{n_A}\right]\Delta^b
$$

 $\left\| K_{\sigma}(\omega,\Delta) - P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta) \right\|_{???} < \epsilon$

$$
\left[\begin{array}{c}\n\tilde{f}_{M+1} \\
\tilde{f}_{M+2} \\
\vdots \\
\tilde{f}_{M+N}\n\end{array}\right] \sum_{\lambda \atop{\lambda}} \sum_{\tilde{f}_{M}\atop{\lambda}} \begin{bmatrix}\n\tilde{f}_{1} \\
\vdots \\
\tilde{f}_{M}\n\end{bmatrix}_{C}\n= \lim_{\sigma \to 0^{+}} \int \left[\prod_{A} \frac{d^{3} p_{A}}{(2\pi)^{3}} \tilde{f}_{A}^{(\ast)}(\mathbf{p}_{A})\right] \tilde{h}(\Delta(\mathbf{p}))
$$
\n
$$
\times \int \left[\prod_{A} \frac{d\omega_{A}}{2\pi}\right] K_{\sigma}(\omega, \Delta(\mathbf{p})) \rho_{c}(\omega, \mathbf{p})
$$

Approximation is obtained by replacing the Haag-Ruelle kernel with a polynomial in the variables $e^{-\tau\omega}$ and Δ :

$$
K_{\sigma}(\omega,\Delta) \quad \longrightarrow \quad P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta) = \sum_{n_1,n_2\cdots\geq 1}\sum_{b\geq 0}w_{n,b}^{\sigma,\epsilon}\left[\prod_{A}(e^{-\tau\omega_A})^{n_A}\right]\Delta^b
$$

 $\left\| K_{\sigma}(\omega,\Delta) - P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta) \right\|_{???} < \epsilon$

Integrating $P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta)$ against the spectral density yields the Euclidean correlator!

$$
\left[\begin{matrix}\n\widetilde{f}_{M+1} & \cdots & \widetilde{f}_{M+1} \\
\widetilde{f}_{M+2} & \cdots & \widetilde{f}_{M}\n\end{matrix}\right]_{c} = \lim_{\sigma \to 0^{+}} \lim_{\epsilon \to 0^{+}} \int \left[\prod_{A} \frac{d^{3} p_{A}}{(2\pi)^{3}} \widetilde{f}_{A}^{(*)}(\mathbf{p}_{A})\right] \times \sum_{n_{1}, n_{2} \cdots \geq 1} \sum_{b \geq 0} w_{n,b}^{\sigma,\epsilon} [\Delta(\mathbf{p})]^{b} \Upsilon_{h}(n\tau;\mathbf{p}) \frac{\widehat{C}_{c}(n\tau;\mathbf{p})}{}
$$

Euclidean correlator:

$$
\hat{C}_c(s;\boldsymbol{p}) = \langle \Omega | \hat{\phi}(\boldsymbol{p}_{M+1}) e^{-s_{M+N}H} \cdots \hat{\phi}(\boldsymbol{p}_{M+N}) e^{-s_MH} \hat{\phi}(\boldsymbol{p}_M)^{\dagger} \cdots e^{-s_1H} \hat{\phi}(\boldsymbol{p}_1)^{\dagger} | \Omega \rangle_c
$$

Kinematic function:

$$
\Upsilon_h(s;\boldsymbol{p}) = \tilde{h}(\Delta(\boldsymbol{p})) \exp \left\{ \sum_{A=1}^M s_A \sum_{B=1}^A E(\boldsymbol{p}_B) + \sum_{A=M+1}^{M+N-1} s_A \sum_{B=M+1}^A E(\boldsymbol{p}_B) \right\}
$$

Which norm?

$$
\sum_{\substack{\|\alpha\|_1=\mathfrak{N}_{\omega}\\0\leq b\leq \mathfrak{N}_{\pmb{p}}}} \bar{\Delta}^{b}\int_{\mathbb{K}}\left[\prod_{A=1}^{M+N-1}\frac{d\omega_{A}}{2\pi}\right]d\Delta e^{\tau\sum_{A}\omega_{A}}\left|D_{\omega}^{\alpha}\partial_{\Delta}^{b}\left[K_{\sigma}(\omega,\Delta)-P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta)\right]\right|^{2}<\epsilon^{2}
$$

- \triangleright One can choose some linear combinations of weighted L^2 norm for various derivatives.
- \blacktriangleright The integration domain $\mathbb K$ is completely determined by kinematics.
- In The number of derivatives that one needs to control $(\mathfrak{N}_\omega, \mathfrak{N}_p)$ depend on how singular the spectral density is.
- ▶ The l.h.s. is a quadratic function of the polynomial coefficients $w_{n,b}^{\sigma,\epsilon}$. Minimizing the l.h.s. can be done by solving a system of linear equations.
- Some speculative argument suggests $\mathfrak{N}_{\omega} = M + N$ and $\mathfrak{N}_{p} = 0$. We need to understand this better...

Summary

$$
\sum_{\substack{\|\alpha\|_1 = \mathfrak{N}_{\omega} \\ 0 \le b \le \mathfrak{N}_{p}}} \bar{\Delta}^{b} \int_{\mathbb{K}} \left[\prod_{A=1}^{M+N-1} \frac{d\omega_{A}}{2\pi} \right] d\Delta e^{\tau \sum_{A} \omega_{A}} \left| D_{\omega}^{\alpha} \partial_{\Delta}^{b} \left[K_{\sigma}(\omega, \Delta) - P_{\sigma, \epsilon} (e^{-\tau \omega}, \Delta) \right] \right|^{2} < \epsilon^{2}
$$

approx $(\sigma, \epsilon) = \sum_{\substack{n_1, n_2, \dots \ge 1 \\ b \ge 0}} w_{n, b}^{\sigma, \epsilon} \int \left[\prod_{A} \frac{d^{3} p_{A}}{(2\pi)^{3}} \tilde{f}_{A}^{(*)}(\mathbf{p}_{A}) \right] [\Delta(\mathbf{p})]^{b} \Upsilon_{h}(n\tau; \mathbf{p}) \hat{C}_{c}(n\tau; \mathbf{p})$

Theorem. For every $r > 0$, two constants A, B_r (independent of ϵ and σ) exist such that

$$
\left|\sum_{\substack{\kappa\\ \kappa<\kappa}}\bigcirc\sum_{\substack{\kappa\\ \kappa<\kappa}}\{-\mathsf{approx}(\sigma,\epsilon)\}\right| < A\epsilon + B_r\sigma^r
$$

assuming that the wave functions have non-overlapping velocities [not essential].

Approximation formula for scattering amplitudes How can we use it?

$$
\begin{bmatrix}\n\begin{matrix}\n\sum_{h_{M+2}}^{M+1} \sum_{k=1}^{K} \sum_{j \neq j} \end{matrix}\n\end{bmatrix}_{c} = \lim_{\sigma \to 0^+} \lim_{\epsilon \to 0^+} \sum_{n_1, n_2 \cdots \ge 1} \sum_{b \ge 0} w_{n,b}^{\sigma,\epsilon} C_{n,b} \\
\sum_{h_{M+N}} C_{n,b} = \int \left[\prod_{A} \frac{d^3 \mathbf{p}_A}{(2\pi)^3} \tilde{f}_A^{(*)}(\mathbf{p}_A) \right] [\Delta(\mathbf{p})]^b \Upsilon_h(n\tau; \mathbf{p}) \hat{C}_c(n\tau; \mathbf{p})\n\end{bmatrix}
$$

- **If** Smaller $\epsilon \Rightarrow$ better approximation of Haag-Ruelle kernel \Rightarrow larger values of $n \Rightarrow$ larger statistical noise.
- **If** Smaller $\sigma \Rightarrow$ Haag-Ruelle kernel more peaked \Rightarrow harder to approximate \Rightarrow larger values of $n \Rightarrow$ larger statistical noise.
- Also recall: $\Upsilon_h(n\tau;\boldsymbol{p})$ increases exponentially with *n*.
- **In** Optimization problem: smaller ϵ and σ means larger statistical errors, larger ϵ and σ means larger systematic error. One could design a strategy based on HLT to minimize total error:

$$
A[w] = \|K_{\sigma}(\omega,\Delta) - P_{\sigma,\epsilon}(e^{-\tau\omega},\Delta)\|_{\gamma\gamma}^2, \qquad B[w] = \sum_{n,b,n',b'} w_{n,b}^{\sigma,\epsilon} \langle\langle C_{n,b}C_{n',b'}\rangle\rangle_c w_{n',b'}^{\sigma,\epsilon}
$$

$$
\begin{bmatrix}\n\begin{matrix}\n\sum_{h_{M+2}}^{M+1} \sum_{k=1}^{K} \sum_{j \neq j} \end{matrix}\n\end{bmatrix}_{c} = \lim_{\sigma \to 0^+} \lim_{\epsilon \to 0^+} \sum_{n_1, n_2 \cdots \ge 1} \sum_{b \ge 0} w_{n,b}^{\sigma,\epsilon} C_{n,b} \\
\sum_{h_{M+N}} C_{n,b} = \int \left[\prod_{A} \frac{d^3 \mathbf{p}_A}{(2\pi)^3} \tilde{f}_A^{(*)}(\mathbf{p}_A) \right] [\Delta(\mathbf{p})]^b \Upsilon_h(n\tau; \mathbf{p}) \hat{C}_c(n\tau; \mathbf{p})\n\end{bmatrix}
$$

▶ A finite-volume estimator is obtained trivially by replacing $\int \frac{d^3 \bm{p}_A}{(2\pi)^3}$ with $\frac{1}{L^3}$ *L*3 \sum *pA* . If coefficients $w_{n,b}$ are kept fixed as the volume is varied, then the $L \rightarrow +\infty$ limit is approached exponentially fast. Having Schwartz wave functions is essential for this step.

- \blacktriangleright The continuum limit of the estimator can be understood in terms of Symanzik effective theory.
- In this approach, the $L \rightarrow \infty$ and $a \rightarrow 0$ limits must be taken before the $\epsilon \rightarrow 0$ and $\sigma \rightarrow 0$ limits. In particular τ cannot be identified with the lattice spacing. For the opposit approach, see Barata and Fredenhagen.

Conclusions and outlook

- \triangleright We have derived an approximation for scattering amplitudes as a linear combination of Euclidean correlators sampled at discrete times.
- \triangleright This formula provides the blueprints for a potentially viable numerical strategy.
- I Our approximation can be calculated from finite-volume correlators and the infinite-volume limit is approached exponentially fast.
- \triangleright Whether statistical and systematic errors are under control in typical QCD simulations remains to be seen.
- Recent algorithmic methods (e.g. Hansen-Lupo-Tantalo), which have been successful in approximations of spectral densities, can be adapted to this problem.
- \blacktriangleright The class of operators used to approximate asymptotic states can be generalized by relaxing the constraint that $\tilde{f}^t(\rho)$ must have compact support. This may make the numerics easier.