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Introduction

> Scattering amplitudes are inherently Minkowskian observables. Only Euclidean
correlators are calculable in lattice QCD. Analytic continuation is needed to real
time. Numerically ill-posed problem.

P Scattering amplitudes can be extracted from energy levels in large but finite
volume. Energy levels can be calculated from Eucliden correlators. More theory
needs to be developed every time a new multi-particle threshold is opened.

M. Luscher, Commun. Math. Phys. 105 (1986), 153-188

M. Luscher, Nucl. Phys. B 354 (1991), 531-578

C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Nucl. Phys. B 727 (2005), 218-243
M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90 (2014) no.11, 116003
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> Approximate scattering amplitudes as a linear combination of Euclidean
correlators sampled at discrete times.
J. C. A. Barata and K. Fredenhagen, Commun. Math. Phys. 138 (1991), 507-520
J. Bulava and M. T. Hansen, Phys. Rev. D 100 (2019) no.3, 034521
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https://inspirehep.net/literature/687104
https://inspirehep.net/literature/1312380
https://inspirehep.net/literature/302471
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An analogy: spectral densities

M. Hansen, A. Lupo and N. Tantalo, Phys. Rev. D 99, no.9, 094508 (2019)
William Jay, Lattice24 plenary talk (see also references therein)
M. Bruno, L. Giusti and M. Saccardi, [arXiv:2407.04141 [hep-lat]].

R(s)
>

pllefe Jp; w(2s):

- o

©
T T T T T T

o Hi& IR
Ry

== e'e - hadrons data
iBES

1KEDR
— PQCD (massless)
! |

1 2 3 4 5
s [GeV]

M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, EurPhysJ. C80, no.3, 241 (2020).
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Euclidean correlator Spectral density (o< R-ratio)
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Euclidean correlator Spectral density (o< R-ratio)
1. Target smeared spectral density p(E)= Iim+/dE'Kg(E/fE)p(E/) .
o—0

The smearing kernel must be smooth with IimOKU(E):d(E) .
T —
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with given precision HKU(E)—Pa,e(eiTE)H <e.
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Euclidean correlator Spectral density (o< R-ratio)
. Target smeared spectral density p(E)= Iim+/dE'Kg(E/fE)p(E/) .
o—0
The smearing kernel must be smooth with IimOKU(E):d(E) .
T —
N
. Approximate of smearing kernel Ko(E)~ Py (e E)= Zw,f’ee_"TE ,
n=1
with given precision | Ko (E) = Po,e(e"E)|| <€ .
N(e)
. Approximation formula p(E)= lim lim Zw,ﬁ"ee”EC(nr)

oc—0Te—0t o



Can we do anything similar for scattering amplitudes?



Scattering amplitudes

— iim [ [1:[ éif)é e | [ [1;[%] Ro(wp) pe(,p) T

wave functions of smearing kernel spectral density of
in/out particles with radius o (M+N)-pt function
d®palls
= lim lim woE / Tp(nr Cc(n7
o—0te—0Tt Z 1[5 H (27T)3 b( 7P) C( ,P)
ny,np--->1 A
b>0 \L
coefficients known time-momentum
of polynomial kinematical Euclidean

approx functions (M+N)-pt function



Approximation formula

RN ’é% = lim tim 7w ,/{Hdm} ]

o—0te—0t (27{')
e >1 A
fun / . " 2220

Euclidean correlator:

Ce(s:p) = (Qd(pms1)e M. B(prsn)e ™M d(pu)T---e 1 d(p1)T|)

Kinematic function:

M A M+N—1
To(s:p) =[A(P)I°A(A(P))expS > "sad E(ps)+ Y sa Z E(ps)
A=1 B=1 A=M+1 B=M+1
M+N M
Violation of asympt. energy conservation: A(p {ZA M+1_2A:1}E(PA)-

h(A) auxiliary function: smooth, compact support, h(0)=1.



Approximation formula
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t t
o—0Te—0 Ly >1
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Coefficients of polynomial approximation of smearing kernels:

Ko(w,A) ~ Py (e ™ A) = > W;j’;[H(e*WA)”A}Ab
A

ny,mpee->1
b>0

(| Ko (w,A) = Poc (77, A) || < €

Theorem. For every r >0, two constants A, B, (independent of ¢ and o) exist such that

< Ae+B.o"

ﬁ @) g — approx(o,€)

assuming that the wave functions have non-overlapping velocities [not essential].



Approximation formula
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t t
o—0Te—0 Ly >1

fren 'd ~ fun . " b>0

Coefficients of polynomial approximation of smearing kernels:

KU(W,A) ~ nge(eiTW,A) — Z Wr(:be |:H (efTWA)nA:| Ab
A

ny,mpee->1
b>0

(| Ko (w,A) = Poc (77, A) || < €

What | am not telling you:
» What does the smearing kernel look like?
» What norm do we need to choose?

See paper or backup slides.



Approximation formula

fMu
RS ‘éfz = lim_lim 7 /[H
+ +
‘/ o—0Te—0 >l A
faan b>0

} To(nrip) Co(nmip)

> Smaller € = better approximation of Haag-Ruelle kernel = larger values of n =
larger statistical noise.

» Smaller 0 = Haag-Ruelle kernel more peaked = harder to approximate = larger
values of n = larger statistical noise.

> Also recall: Ty(nT;p) increases exponentially with n.
> Optimization problem: smaller € and o means larger statistical errors, larger ¢ and

o means larger systematic error. One could design a strategy based on HLT to
minimize total error:

Alw] = || Ko (w,A) = P (e T A)H Blwl= > Wy s ((Ci,bCor 1 ) W,y
n,b,n’ b’
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Approximation formula

‘éfz = lm lim > /[H

} To(nrip) Co(nmip)

b>0

A finite-volume estimator is obtained trivially by replacing /(2 E wit L3 Z

If coefficients wj, ;, are kept fixed as the volume is varied, then the L — 4-c0 I|m|t
is approached exponentially fast. Having Schwartz wave functions is essential for
this step.

The continuum limit of the estimator can be understood in terms of Symanzik
effective theory.

In this approach, the L — co and a — 0 limits must be taken before the ¢ — 0 and
o — 0 limits. In particular 7 cannot be identified with the lattice spacing. For the
opposit approach, see Barata and Fredenhagen.



Conclusions and outlook

We have derived an approximation for scattering amplitudes as a linear
combination of Euclidean correlators sampled at discrete times.

This formula provides the blueprints for a potentially viable numerical strategy.

Our approximation can be calculated from finite-volume correlators and the
infinite-volume limit is approached exponentially fast.

Whether statistical and systematic errors are under control in typical QCD
simulations remains to be seen.

Recent algorithmic methods (e.g. Hansen-Lupo-Tantalo), which have been
successful in approximations of spectral densities, can be adapted to this problem.
Other approaches are also available.



Backup slides
Talk given at CERN workshop, July 2024



Introduction

» How do we calculate hadron scattering amplitude from Quantum
Chromodynamics? In principle...

(QUTE(Pu+1)- - Spmn)B(Pu) T+ d(p1) 1)

" & O Ié " < lim |:H(p§‘—m2)
A

- : po—LE(p)
PM+N )/ Pm

» Numerical lattice QCD is the only known tool which allows the calculation of
observables in QCD at the nonperturbative level.

» Only Euclidean correlators are calculable in lattice QCD. Analytic continuation is
needed to real time. Numerically ill-posed problem.

> Find another way...
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Theoretical background

Haag-Ruelle scattering theory
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» Black lines = classical trajectories. > Pink line: p? = m?

» Black dots: energy-momentum of
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» Black lines = classical trajectories.

» Allow velocity indetermination.

» Gray regions = cones of classical
trajectories.
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Pink line: p>=m?

Black dots: energy-momentum of
particle.
Allow momentum indetermination.

Black lines: allowed values for
energy-momentum.
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» Black lines = classical trajectories.

» Allow velocity indetermination.

» Gray regions = cones of classical
trajectories.

> Green/blue regions = position of
particle at time t.
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Pink line: p>=m?

Black dots: energy-momentum of
particle.
Allow momentum indetermination.

Black lines: allowed values for
energy-momentum.
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» Gray regions = cones of classical
trajectories.

> Green/blue regions scale with t.

> ff(x) is localized in green/blue
regions.
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> Green/blue regions scale with t. spectrum of P on 1-particle mass
> ff(x) is localized in green/blue ihell'
regions. > f£(p) has support in green/blue

regions.
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Gray regions = cones of classical » Pink regions = spectrum of P.
trajectories. > Green/blue regions intersect
Green/blue regions scale with t. spectrum of P on 1-particle mass
fA(x) is localized in green/blue sNheII.
regions. > f£(p) has support in green/blue
Interaction between particles regions.

decreases with t.
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F(p) = e 0 E @I, (g — E(p)) Fa(p)

> fA(p) = asymptotic particle wave function and E(p) =+/m?2 + p2.
» (a(w) cuts off multi-particle states. (a(w) smooth and compact support, (4(0) =1.
»> Support of f;(p) intersects spectrum of P only on 1-particle mass shell.



Haag-Ruelle scattering theory

Vau() =] / TPA 1t (pa)i(oa)" 1)

I o @01 o (a)alielpa) 19+ O(1e )

> Fi(p) = e EPNCa(po—E(p)) fa(p)
> Error is O(|t|~°°) for non-overlapping velocities, otherwise O(|t|~1/?).

> aiut(p) are standard creation operators:

[30ut (), (P)] = (27)36%(p—p')  [a0ut(P),d0ut(p’)] =0
[P.al ()l =paly(p)  [H.al,(p)]=E(p)al,(p)



Approximation formula for scattering amplitudes

Rough sketch of derivation



Scattering amplitude
na=+1 na=-1
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Scattering amplitude

x(Qd(prs1) -+ d(Pmsn)dpm) T+ d(p1)TIQ)



na=+1 na=-1

. i
TIOAN O iy
e L Fu

= lim
t—+

:t_lj_Too |:H 27r)4 (pA CA (PA E(pa))

A

Scattering amplitude

' (Wour () [Win(—1))

et analpA—E(pa)]

x(Qd(prs1) -+ d(Pmsn)dpm) T+ d(p1)TIQ)

» Wildly oscillating phase for t — +o0.

» Not good for numerics.

> Cancallation of regions with >_ ,na[pS—

E(pa)l #0.

» Can we achieve the same effect in a different way? Some mathematical trickery...



Scattering amplitude
na=+1

VFI\/HI fi
s $ @ 2

O :tjm <wout(t)|win(7t)>
fn /

Introduce two auxiliary functions:
» &(t) Schwartz with unit integral and closed support in (0,+00);
> h(t) Schwartz with unit integral.

tim [ deds(e)(s) (Waus (55 5) [Win (— 25-5))

= [dsnts) | T aeo(e) tim (Vo (5 5) Vi &5 5) ) = Ve o) Vin(—o0)



Scattering amplitude (2)
na=+1 na=-1
FM}I fvl
furi2 \ %
f\ O ,é _ |in8+/dtds¢(t)h(s)<\|10ut(£_s)
N

ve(-5-9))

=i [H é:; é*)(PA)Ci*’(P%—E(pAﬂ} H(SmEen)) o( S mieh-Ean)
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o—0t n
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Scattering amplitude (2)

na=+1

F/\/Hl fi

fvw éﬁ lim /dtdscb <w (f s)‘\ll( t s)>
= lim_ (0)h() (Wour (5 —5) [Win (= £ —

fM+N/ ,\ B

o—0t

= im [ {H CR A s (65 E(pA»} H(Smeen) & Sotrh-Ea)

X (Qé(pm+1)- SPmn)(pm) - d(p1) Q)

) regularizes the wildly-oscillating phase factor and selects the desired time-
ordering. It must be complex!

E(A) can be chosen with compact and arbitrarily narrow support around A =0.
It cuts away contributions characterized by non-zero violations of the asymp-
totic energy conservation.

Wightman function in momentum space ~ spectral density.



Wightman function ~ spectral density

(Qélpmi1)  Slomi2) - lpmin)  dpm)T - d(p2)T B(p1)TIR)



Wightman function ~ spectral density

Em=pl++py
Em—1=p+ Py

Ems2 = Ps\)prl +PR/IJrQ &= p(l) + p(Z)
EM+1= Pt T T &1=p1
Qdowsa) | Bomsa) | Somen) | dem)t | | )t T o)1)



Wightman function ~ spectral density

Em=pl++py
Em—1=p+ Py

EMsa= P%Aﬂ +Pgﬂ+2 E=pY+pd
EM+1= Pt T T &1=pf
Qdowsa) | Bomsa) | Somen) | dem)t | | )t T o)1)

= 27r5(5M+N—5M)

X (Q|$(Pm+1)28(H—Enr+1) -~ (Pm+n) 278 (H—Em)d(Pu) - 2m8(H—E1)d(p1) )

definitions: @(p) = /d3xe_ipx¢(0,x)

wa=Ea— [Ealon-shel

=216(Em+n—Em) p(w;,P)



Approximation formula

SR a)| ae)
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Approximation formula

i EN @ = im [ [T 224100 e
A
e )/ . X/{H de] Ko (w,A(p)) pe(w,p)
A

27

Haag-Ruelle kernel K, (w,/A) smears the spectral density in the energy variable w. The
parameter o plays the role of the smearing radius.

- (2w —A M1
Ko(W’A):q)(T)CI(WI) [T catwa—wa 1) [¢m(wm—wm—1)
A
M+N—1
XC/TAH(WMH)[ II CZ(“A—MAl)] Cran (Wm—wppn—1—A)
A=M+2

Violation of asymptotic energy conservation: A(p)= ZnAE(pA).
A



Approximation formula

B | g [T e e
TN 152 Koteto)) e
A

Approximation is obtained by replacing the Haag-Ruelle kernel with a polynomial in
the variables e ™" and A:

Ko(w,A) — Poc(e™,8)= > Zwif[H(e‘T“A)nA]Ab

ny,np--->1b>0 A

Ko (w,A)— Po,e(e’”’,A)H??? <e



Approximation formula

3 ~
éﬁé%mﬂﬂMm)

o—0t
Fvrin ‘/ \

de

9] Kt pe(cp)

N L{é ~ lim /[1;[
</[11

Approximation is obtained by replacing the Haag-Ruelle kernel with a polynomial in
the variables e ™" and A:

Ko(w,A) — Poc(e™,8)= > Zwif[H(e‘T“A)nA]Ab

ny,np--->1b>0 A

||Ka(w,A) — nge(efT“,A)H??? <e

Integrating Py (e~ " ,A) against the spectral density yields the Euclidean correlator!



Approximation formula

Fjﬁl O @ = lim_lim /[H (d;p)é A*)(PAi|

o—0tTe—0t
‘\
fM\N ‘/ f c x Z ZW ]b 'Y‘h(m' P) Cc("T P)

ny,np--->1b>0

Euclidean correlator:

Ce(sip) = (Qd(pms1)e M. d(ppin)e ™ MH d(py)T -+ e M b(p1)T|Q)
Kinematic function:

) Mo A M+N—1
Th(S;P)=h(A(P))eXP{ZsAZE(PB > sa Z PB)}
A=l B=1

A=M+1 B=M+1



Which norm?

-
ool =9 K
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d 2
[ H 2‘:TA]dAeTEAWA’DQaA Ko (w,A) = Py.c(e7 ™ A)]‘ <é
A=1

> One can choose some linear combinations of weighted L? norm for various
derivatives.

» The integration domain K is completely determined by kinematics.

» The number of derivatives that one needs to control (N, 9Mp) depend on how
singular the spectral density is.

» The l.h.s. is a quadratic function of the polynomial coefficients w b Minimizing
the l.Lh.s. can be done by solving a system of linear equations.

> Some speculative argument suggests 9, = M+ N and 91p =0. We need to
understand this better...



Summary

N
d 2
[ H 2‘:TA]dAeTEAWA’DaaA Ko (w,A) = Py.c(e7 ™ A)]‘ <é
A=1

-
ool =9 K
0<h<MN,

approx(o,c) = wii [ [ s <*>(pA)] (AP Ty(7:) Ce(nr:p)

"1a’72

Theorem. For every r >0, two constants A, B, (independent of € and o) exist such
that

‘§ O ?—approx(o,e) < Ae+Bo"

N

assuming that the wave functions have non-overlapping velocities [not essential].



Approximation formula for scattering amplitudes

How can we use it?
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M2 ~ 21 = lim lim E E wae,,b
o—0te—0t

i / ’\ ny,ny--->1b>0

c

Coo= [ [TTEZ 4700 18I Ts(orip)Cctarip)

A

> Smaller € = better approximation of Haag-Ruelle kernel = larger values of n =
larger statistical noise.

» Smaller 0 = Haag-Ruelle kernel more peaked = harder to approximate = larger
values of n = larger statistical noise.

> Also recall: Tp(n7;p) increases exponentially with n.

» Optimization problem: smaller e and o means larger statistical errors, larger € and
o means larger systematic error. One could design a strategy based on HLT to
minimize total error:

A[W] = ||KJ(W1A) Po‘ E(e_Tw A)||777 B[W] = Z W;E«Cn,bcn’,b’ >>CW:;7’6b/
n,b,n’ b’



i f
fM’Vﬁzlg&CD?]F2 lim lim Z nge n,b

. N o—0t e—071
Faon / 1\ i, ny,np--->1b>0
c
Coo= [ [TTEZ 4700 18I Ts(orip)Cctarip)
A
> A finite-vol timator is obtained trivially b laci /d wit Z
InIte-volume estimator IS obtalne rivia replacin
y by replacing [ 555 w h o3

If coefficients w,, ;, are kept fixed as the volume is varied, then the L — +o0 I|m|t
is approached exponentially fast. Having Schwartz wave functions is essential for
this step.

» The continuum limit of the estimator can be understood in terms of Symanzik
effective theory.

» In this approach, the L — 0o and a— 0 limits must be taken before the ¢ — 0 and
o — 0 limits. In particular 7 cannot be identified with the lattice spacing. For the
opposit approach, see Barata and Fredenhagen.



Conclusions and outlook

We have derived an approximation for scattering amplitudes as a linear
combination of Euclidean correlators sampled at discrete times.

This formula provides the blueprints for a potentially viable numerical strategy.

Our approximation can be calculated from finite-volume correlators and the
infinite-volume limit is approached exponentially fast.

Whether statistical and systematic errors are under control in typical QCD
simulations remains to be seen.

Recent algorithmic methods (e.g. Hansen-Lupo-Tantalo), which have been
successful in approximations of spectral densities, can be adapted to this problem.

The class of operators used to approximate asymptotic states can be generalized
by relaxing the constraint that f*(p) must have compact support. This may make
the numerics easier.



