Tensor network study of CP(1) model with theta-term

Shinji Takeda

(Kanazawa U.)

In collaboration with H. Aizawa and Y. Yoshimura

German Japanese Workshop 2024 25-27.09.2024 @Mainz

2005-2008 Postdoc time

Contents

- Introduction of tensor networks
- Application to $CP(1) + \theta$ model

Tensor networks (TN)

- Why TN? Answer: No sign-problem Real-time, Finite density, θ-term, ...
- What's TN? we address later

 TN is used as a representation of wave function or partition function (path integral)

local interaction

$$Z \equiv \int [d\phi] e^{-S[\phi]}$$

local interaction

$$Z \equiv \int [d\phi] e^{-S[\phi]} = \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=$$

Periodic BC

- $\sum_{\ldots,i,j,k,l,\ldots} \cdots T_{ijkl} T_{mnio} \cdots$
- Non-trivial step, but
- OK for scalar, gauge, and fermion fields as long as the interaction is local
 - Scalar : Shimizu 2012, Sakai+ 2018
 - Gauge: Meurice+ 2013, Nishimura+ 2021, Fukuma+ 2021
 - Fermions: Shimizu+Kuramashi 2014

 $Z \equiv \int [d\phi] e^{-S[\phi]} = \left(\sum_{i,j,k,l,l} \cdots T_{ijkl} T_{mnio} \cdots \right)$ $\operatorname{cost} \propto \chi^{2V}$ for $1 \leq i, j, \ldots \leq \chi$

Periodic BC

Bond dimension

Information compression using singular value decomposition (SVD)

Tensor renormalization group (TRG) Levin+Nave 2007

Application to $CP(1) + \theta$

2d CP(1) model

toy model of QCD

 $z \in \mathbb{C}^2$

- asymptotic free confinement instanton

 $|z|^2 = \sum_{a=1}^{2} z_a^* z_a = 1$

 $S = \int d^2x \left(\beta |D_{\mu}z|^2 + i \frac{\theta}{2\pi} \epsilon_{\mu\nu} \partial_{\mu}A_{\nu} \right)$

U(1) auxiliary field

on the lattice

continuum

on the lattice
$$\begin{array}{c} & & \text{mod } 2\pi \\ S_{\text{lat}} = -2\beta \sum_{x,\mu} \left[z^{\dagger}(x)z(x+\hat{\mu})U_{\mu}(x) + (c.c.) \right] - i\frac{\theta}{2\pi} \sum_{x} q(x) \quad \in \mathbb{C} \end{array}$$

$$U_{\mu} = e^{iA_{\mu}}$$

sign problem!

Haldane's conjecture : mass gap of O(3) vanishes at $\theta = \pi$ Haldane 1983 $(\simeq CP(1))$

Affleck+Haldane 1987 expected universality class : k = 1 SU(2) WZNW Wess+Zumino 1971, Novikov 1981, Witten 1984

Azcoiti+ 2007 Monte Carlo, imaginary θ

Critical region is observed but the universality class is not identified

⇒ This should be investigated by sign problem free method : tensor network!

Kawauchi+ST 2018 Tensor network

$$\chi = \frac{1}{L^2} \frac{\partial^2}{\partial \theta^2} \log \mathcal{Z}(\theta)|_{\theta = \pi} \propto L^b$$

1st
$$: b = 2$$

2nd $: b = \gamma/\nu < 2$

 $\beta = 0.5$ is roughly consistent with MC Azcoiti+ 2007

But universality class is not determined

 D_β , D_θ : truncation order

no critical point is found up to β =1.1

What's new in our study

We make two improvements

• Using better initial tensor

• New analysis based on CFT

Improvement of initial tensor

Kawauchi+ST 2017, Nakayama+ 2021

• Previous studies use character expansion for θ-term

 N_{A}

Hassan+ 1995

$$e^{i\frac{\theta}{2\pi}q_p} = \sum_{n \in \mathbb{Z}} e^{in(A_1 + A_2 - A_3 - A_4)} C_n(\theta) \xrightarrow{\qquad } \propto \frac{1}{n} \quad : \text{slow convergence!}$$

 \Rightarrow large truncation error

• New method : Quadrature

 $hat{}\pi$

Gauss-Legendre quadrature

Gauge field :
$$\int_{-\pi}^{\pi} dAf(A) \approx \sum_{i=1}^{n} w_i f(A_i) \qquad i \Rightarrow \text{tensor's index}$$
weight
Complex scalar field :
$$\int_{|z|^2 = 1} dz g(z) \approx \sum_{p=1}^{N_z} w_p^{(z)} g(z_p) \qquad p \Rightarrow \text{tensor's index}$$
Genz+Keister 1996

Improvement of initial tensor

New method shows better precision

New analysis method

• Previous studies use susceptibility

Kawauchi+ST 2017, Nakayama+ 2021

$$\chi = \frac{1}{L^2} \frac{\partial^2}{\partial \theta^2} \log \mathcal{Z}(\theta)|_{\theta=\pi} \propto L^b \qquad \qquad \text{fitting around } \theta = \pi \Rightarrow \text{ fitting range ?}$$

• CFT : central charge and scaling dimensions

Central charge

Scaling dimensions

$$x_i = h_i + \bar{h}_i = \frac{1}{2\pi} \log\left(\frac{\lambda_0}{\lambda_i}\right) \qquad x_1, x_2, x_3, x_4$$

Summary

- We have analyzed phase structure of 2d CP(1)+θ using tensor network
- Two improvements
 - Better (more precise) initial tensor
 - New analysis using CFT : central charge and scaling dimensions
- Critical point region starts from $\beta \approx 0.55$ and k=1 SU(2) symmetry is observed at $\beta \approx 0.595$

German-Japanese Workshop 202? in Kanazawa If our proposal is accepted!!!

Future

- Mass gap scaling
- Continuum limit?

Back up

Kawauchi+ST 2018 Tensor network

Critical region is observed but the universality class is not identified

c=1, k=1 WZNW

scaling dimension for c=1 free boson CFT

$$x_i = x_{M,N} = \frac{M^2}{4R^2} + R^2 N^2, \quad M, N \in \mathbb{Z}$$
 $R:$ compact radius

for $R = \sqrt{\frac{1}{2}} \Rightarrow$ SU(2) symmetry appears \Rightarrow k=1 WZNW universality class Ginsparg 1988

$$x_{\pm 1,0} = x_{0,\pm} = \frac{1}{2} \Rightarrow \text{quartet}$$

X

Nature of transition at $\beta = 0.1$

Kawauchi+ST 2017

$$\chi = \frac{1}{V} \frac{\partial^2}{\partial \theta^2} \log \mathcal{Z}(\theta)|_{\theta = \pi} \propto V^a$$

00

$$\begin{cases} 1 \text{st} &: a = 1 \\ 2 \text{nd} &: a = \gamma/\nu < 1 \end{cases}$$

 $D_{cut} = 64$, TRG for coarse-graining

Haldane's conjecture : mass gap of O(3) vanishes at $\theta = \pi$ Haldane 1983 $(\simeq CP(1))$

Bietenholtz et al. 1995, Wiese et al. 2012, de Forcrand et al. 2012, Azcoiti et al. 2012, Alles et al. 2014

 $O(3) + \theta$ was intensively studied by MC and Haldane's conjecture is confirmed And universality class is consistent with k=1 WZNW model

Wess & Zumino 1971, Novikov 1981, Witten 1984

Tensor renormalization group (TRG) PRL99,120601(2007)

Tensor renormalization group (TRG) PRL99,120601(2007)

Bond dimension

 T_{ijkl}

 $1 \leq i,j,\ldots \leq \chi$

 \Leftrightarrow

Tensor renormalization group (TRG) PRL99,120601(2007)

$$1 \le i, j, \dots \le \chi$$

$$\chi^2 \times \chi^2 \text{ matrix}$$

$$\Leftrightarrow \quad T_{ijkl} = M_{(ij)(kl)}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2}$

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} U_{am} \sigma_m (V^{\dagger})_{mb}$ unitary matrix $\sigma_1 \ge \sigma_2 \ge \dots \ge 0$: singular value (non-negative)

$$\Rightarrow T_{ijkl} = M_{(ij)(kl)}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2} \ \Rightarrow \mathrm{TN}$ is sign-problem-free

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} U_{am} \sigma_m (V^{\dagger})_{mb}$ unitary matrix $\sigma_1 \ge \sigma_2 \ge ... \ge 0$: singular value (non-negative)

$$\begin{split} T_{ijkl} &= M_{(ij)(kl)} \\ & \overset{\text{SVD}}{=} \sum_{m=1}^{\chi^2} U_{(ij)m} \sigma_m V_{m(kl)}^{\dagger} \end{split}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2} \ \Rightarrow \mathrm{TN}$ is sign-problem-free

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} U_{am} \sigma_m (V^{\dagger})_{mb}$ unitary matrix $\sigma_1 \ge \sigma_2 \ge \dots \ge 0$: singular value (non-negative)

$$\approx \qquad \Longleftrightarrow \qquad T_{ijkl} = M_{(ij)(kl)}$$

truncation
$$\approx \sum_{m=1}^{X} U_{(ij)m} \sigma_m V_{m(kl)}^{\dagger}$$

truncation of SVD = information compression

Tensor network rep. of ${\cal Z}$

depends on property of field and interaction

- Scalar field (non-compact)
 - Orthonormal basis expansion

Shimizu mod.phys.lett. A27,1250035(2012), Lay & Rundnick PRL88,057203(2002)

- Gauss Hermite quadrature Sakai et al., JHEP03(2018)141

• Gauge field (compact : SU(N), CP(N) etc.)

 Character expansion : maintain symmetry, better convergence Meurice et al., PRD88,056005(2013)

• Fermion field (Dirac/Majorana)

Shimizu & Kuramashi PRD90,014508(2014), ST & Yoshimura PTEP(2015)043B01

- Grassmann number $\theta^2=0 \rightarrow finite$ sum

In principle, we can treat any fields

$$e^{\phi\theta} = 1 + \phi\theta = \sum_{n=0}^{1} (\phi\theta)^n$$

e.g. 2D Ising model

$$\mathcal{Z} = \sum_{\{s\}} \exp\left(\sum_{\langle x,y \rangle} \beta s_x s_y\right) = \sum_{\{s\}} \prod_{\langle x,y \rangle} \exp(\beta s_x s_y)$$

$$= (\cosh\beta)^{2V} \sum_{\{s\}} \prod_{\langle x,y \rangle} \sum_{i_{xy}=0}^{1} (s_x s_y \tanh\beta)^{i_{xy}} \qquad V = \text{# of lattice sites}$$

$$\exp(\beta s_x s_y) = \cosh(\beta s_x s_y) + \sinh(\beta s_x s_y)$$

$$= \cosh\beta + s_x s_y \sinh\beta$$

$$= \cosh\beta (1 + s_x s_y \tanh\beta)$$

$$= \cosh\beta \sum_{i_{xy}=0}^{1} (s_x s_y \tanh\beta)^{i_{xy}} \qquad x = \pm 1$$

$$\frac{1}{i_{xy}} = 0$$

$$\exp(\partial s_x s_y) = \frac{1}{i_{xy}} \left(\sum_{i_{xy}=0}^{1} (s_x s_y \tanh\beta)^{i_{xy}} + \sum_{i_{xy}=0}^{1} (s_x$$

$$\mathcal{Z} = \sum_{\{s\}} \exp\left(\sum_{\langle x,y \rangle} \beta s_x s_y\right) = \sum_{\{s\}} \prod_{\langle x,y \rangle} \exp(\beta s_x s_y)$$
$$= (\cosh\beta)^{2V} \sum_{\{s\}} \prod_{\langle x,y \rangle} \sum_{i_xy=0}^{1} (s_x s_y \tanh\beta)^{i_xy}$$
$$= (\cosh\beta)^{2V} \sum_{\{i\}} \sum_{\{s\}} \prod_{\langle x,y \rangle} (s_x \sqrt{\tanh\beta} \cdot s_y \sqrt{\tanh\beta})^{i_xy}$$

e.g. 2D Ising model

e.g. 2D Ising model $\mathcal{Z} = \sum_{\{s\}} \exp\left(\sum_{\langle x,y \rangle} \beta s_x s_y\right) = \sum_{\{s\}} \prod_{\langle x,y \rangle} \exp(\beta s_x s_y)$ $= (\cosh \beta)^{2V} \sum_{\{s\}} \prod_{\{x,y\} > i_{xy} = 0}^{1} (s_x s_y \tanh \beta)^{i_{xy}}$ $= (\cosh\beta)^{2V} \sum \sum \prod (s_x \sqrt{\tanh\beta} \cdot s_y \sqrt{\tanh\beta})^{i_{xy}}$ $\{i\} \ \{s\} \ \langle x, y \rangle$ $= (\cosh\beta)^{2V} \sum \sum \prod (s_x \sqrt{\tanh\beta})^{i_{xy}} (s_x \sqrt{\tanh\beta})^{i_{xz}} (s_x \sqrt{\tanh\beta})^{i_{xw}} (s_x \sqrt{\tanh\beta}$ $\{i\} \ \{s\} \ x$ $= (\cosh\beta)^{2V} \sum \sum \prod (\sqrt{\tanh\beta})^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} s_x^{i_{xy}+i_{xz}+i_{xw}+i_{xv}}$ $\{i\}\ \{s\}\ x$ $= (\cosh\beta)^{2V} \sum_{\{i\}} \prod_{x} (\sqrt{\tanh\beta})^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} \sum_{s_x=\pm 1} s_x^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} \text{ summation is done}$ $= (\cosh\beta)^{2V} \sum_{\{i\}} \prod_{x} (\sqrt{\tanh\beta})^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} 2\delta(\operatorname{mod}(i_{xy}+i_{xz}+i_{xw}+i_{xv},2))$ $\{i\}$ x $=T_{i_{xy}i_{xz}i_{xw}i_{xv}}$ new d.o.f. : index of tensor

e.g. 2D Ising model

 $\mathcal{Z} = 2^{V} (\cosh \beta)^{2V} \sum_{\dots, i, j, k, l, m, n, o, \dots} \cdots T_{ijkl} T_{mnio} \cdots$

 $T_{ijkl} = (\sqrt{\tanh\beta})^{i+j+k+l} \delta(\operatorname{mod}(i+j+k+l), 2)$

 $\begin{bmatrix} T_{0000} & T_{0001} & T_{0010} & T_{0011} \\ T_{0100} & T_{0101} & T_{0110} & T_{0111} \\ T_{1000} & T_{1001} & T_{1010} & T_{1011} \\ T_{1100} & T_{1101} & T_{1110} & T_{1111} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \tanh \beta \\ 0 & \tanh \beta & \tanh \beta & 0 \\ 0 & \tanh \beta & \tanh \beta & 0 \\ \tanh \beta & 0 & 0 & (\tanh \beta)^2 \end{bmatrix}$

size and elements of tensor depend on a model

MC

Boltzmann weight is interpreted as probability

Importance sampling

Statistical errors

Sign problem may appear

Critical slowing down

TRG

Tensor network rep. of partition function (no probability interpretation)

Compression of tensor by SVD, Optimization

Systematic errors (truncated SVD)

No sign problem

∵ no probability

Efficiency of compression gets worse around criticality

can be improved by TNR, Loop-TNR in 2D system Evenbly & Vidal 2014, Gu et al., 2015 From point of view of MC

From point of view of TN

Space of theory

Is there a region where any method cannot access ?

Is entanglement problem NP-hard ?

Hierarchy of singular value

• Near criticality: hierarchy gets worse (large S)

like critical slowing down in MC

Tensor network renormalization (TNR) Evenbly&Vidal 2014 can help the situation

Renormalization group

TRG

$$H(K; \{s\}) = \sum_{i} K_i \mathcal{O}_i(\{s\})$$

s : spins

$$\mathcal{Z} = \sum_{\{s\}} e^{-\beta H}$$

Block spin transf., Migdal-Kadanoff RG

$$\begin{split} H &= \sum_{i} K_{i} \mathcal{O}_{i} \xrightarrow{\mathcal{R}} H' = \sum_{i} K'_{i} \mathcal{O}'_{i} \\ K' &= \mathcal{R}_{K}(K) \\ K^{*} &= \mathcal{R}_{K}(K^{*}) \text{ : fixed point} \end{split}$$

target: critical exponent etc

$$T_{ijkl}(K)$$

$$i, j, k, l : \text{indexes}$$

$$\mathcal{Z} = \sum_{i,j,k,l,\dots} \prod T_{ijkl} \cdots$$
SVD + contraction
$$\sum_{i,j,k,l,\dots} \prod T_{ijkl} \cdots \xrightarrow{\mathcal{R}} \sum_{i,j,k,l,\dots} \prod T'_{ijkl} \cdots$$

$$T' = \mathcal{R}_T(T)$$

$$T^* = \mathcal{R}_T(T^*) : \text{fixed point tensor}$$
target : partition function etc

Kadanoff et al, Rev.Mod.Phys.86,647(2014)

SVD

For simplicity rank- $k m \times n$ real matrix $A (m \ge n \ge k)$ is given by

 $A = U \Lambda V^T$ (full SVD)

 $\begin{cases} U: m \times m \text{ orthonormal matrix}: U=(u_1, u_2, ..., u_m), \quad U^T U=U U^T = I_m \\ V: n \times n \text{ orthonormal matrix}: V=(v_1, v_2, ..., v_n), \quad V^T V=V V^T = I_n \\ \Lambda: m \times n \text{ diagonal matrix}: \Lambda = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_n) \end{cases}$ where $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_k > \sigma_{k+1} = \dots = \sigma_n = 0$)

Best approximation of A ?

