

"Tensor renormalization group study of (1+1)-dimensional U(1) gauge-Higgs model at $\theta = \pi$ with Lüscher's admissibility condition"

S. Akiyama and YK, JHEP09(2024)086

Yoshinobu Kuramashi Center for Computational Sciences(CCS), Univ. of Tsukuba

Sept. 25~27, 2024, German-Japanese Seminar@Mainz

Plan of talk

- Brief Introduction to Tensor Renormalization Group(TRG)
- Current Status of TRG Application to QFTs
- (1+1)-dimensional U(1) gauge-Higgs model w/ θ -term
 - Pure U(1) gauge theory w/ $M \rightarrow \infty$
 - Determination of critical endpoint M_c
- Summary

Tensor Renormalization Group (TRG)

Tensor Network representation

Details of model are specified in initial tensor The algorithmic procedure is independent of models

Of course, direct contraction is impossible for large N even with current fastest supercomputer

 \Rightarrow How to evaluate the partition function?

Schematic View of TRG Algorithm

- 1. Singular Value Decomposition of local tensor T
- 2. Contraction of old tensor indices (coarse-graining)
- 3. Repeat the iteration

TRG vs Monte Carlo

Advantages of TRG

Free from sign problem/complex action problem in MC method

 $Z = \int \mathcal{D}\phi \, \exp(-S_{\rm Re}[\phi] + iS_{\rm Im}[\phi])$

- Computational cost for L^D system size C > log(L)
- Direct manipulation of Grassmann numbers
- Direct evaluation of partition function Z (density matrix ρ) itself

Applications in particle physics :

Finite density QCD, QFTs w/ θ -term, Lattice SUSY etc.

Also, in condensed matter physics

Hubbard model (Mott transition, High Tc superconductivity) etc.

2d models

TRG Approaches to QFTs (1)

w/ sign problem

Real ϕ^4 theory:

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP05(2019)184

<mark>Complex φ⁴ theory w/ μ≠0</mark>∶

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP02(2020)161

U(1) gauge theory w/ θ-term :

YK-Yoshimura, JHEP04(2020)089

Schwinger(2d QED), Schwinger w/ θ -term:

Shimizu-YK, PRD90(2014)014508, 074503, PRD97(2018)034502

<mark>N=1 Wess-Zumino model (SUSY)</mark> :

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP03(2018)141

<mark>SU(2) principal chiral model w/ μ≠0</mark>:

Luo-YK, PRD107(2023)094509

O(3) nonlinear σ model w/ μ ≠0 and μ =0 :

Luo-YK, JHEP03(2024)020, arXiv:2406.08865

Application to various models w/ sign problem, Development of calculational methods for scalar, fermion and gauge fields

w/ sign problem

3d models

Z₂ gauge-Higgs model w/ $\mu \neq 0$: Akiyama-YK, JHEP05(2022)102 Real ϕ^4 theory: Akiyama-YK-Yoshimura, PRD104(2021)034507 Z₂gauge theory at T $\neq 0$: YK-Yoshimura, JHEP08(2019)023

4d models

Ising model: Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510 Complex ϕ^4 theory w/ $\mu \neq 0$:

Akiyama-Kadoh-YK-Yamashita-Yoshimura, JHEP09(2020)177 NJL model w/ μ≠0 :

Akiyama-YK-Yamashita-Yoshimura, JHEP01(2021)121 Real ϕ^4 theory : Akiyama-YK-Yoshimura, PRD104(2021)034507 Z₂ gauge-Higgs model w/ $\mu \neq 0$: Akiyama-YK, JHEP05(2022)102 Z₃ gauge-Higgs model w/ $\mu \neq 0$: Akiyama-YK, JHEP10(2023)077

 \Rightarrow Research target is shifting from 2d models to 4d ones

TRG Approaches to QFTs (3)

w/ sign problem

Condensed matter physics

Similarity btw Hubbard models and NJL ones Action consisting of hopping terms and 4-fermi interaction term

$$S = \sum_{n \in \Lambda_{d+1}} \epsilon \left\{ \bar{\psi}(n) \left(\frac{\psi(n+\hat{\tau}) - \psi(n)}{\epsilon} \right) - t \sum_{\sigma=1}^{d} \left(\bar{\psi}(n+\hat{\sigma})\psi(n) + \bar{\psi}(n)\psi(n+\hat{\sigma}) \right) + \frac{U}{2} (\bar{\psi}(n)\psi(n))^2 - \mu \bar{\psi}(n)\psi(n) \right\}$$

First principle calculation at finite density (1+1)d Hubbard model : Akiyama-YK, PRD104(2021)014504 (2+1)d Hubbard model : Akiyama-YK-Yamashita, PTEP2022(2022)023I01

(1+1)d U(1) gauge Higgs model w/ θ-term imposing Lüscher's admissibility condition Simultaneous solution to complex action problem and topological freezing problem

cf. dual simulation w/o Lüscher's admissibility condition

Gattringer+, PRD92(2015)114508, NPB935(2018)344

$$S_{g} = \begin{cases} \sum_{n} \frac{1 - \operatorname{Re}P_{12}(n)}{1 - [1 - \operatorname{Re}P_{12}(n)]/\epsilon} & \text{if "admissible"} \\ \infty & \text{otherwise} \end{cases}$$

$$Lüscher, NPB549(1999)295$$

 P_{12} is plaquette value, link variable: $U_{\nu}(n) = e^{i\vartheta_{\nu}(n)} \quad \vartheta_{\nu}(n) \in [-\pi,\pi]$

$$S_{h} = -\sum_{n} \sum_{\nu} [\phi^{*}(n)U_{\nu}(n)\phi(n+\hat{\nu}) + \phi^{*}(n+\hat{\nu})U_{\nu}^{*}(n)\phi(n)]$$

+ $M\sum_{n} |\phi(n)|^{2} + \lambda\sum_{n} |\phi(n)|^{4}$.
 $M = m^{2} + 4$
 $S_{\theta} = -\frac{\mathrm{i}\theta}{2\pi}\sum_{n} \ln P_{12}(n)$

 m^2

Reparametrization of Higgs field

Complex-valued Higgs field is reparameteized by $\phi(n) = \sqrt{l(n)}e^{i\varphi(n)}$

$$S_h = -\sum_n \sum_{\nu} 2\sqrt{\ell(n)\ell(n+\hat{\nu})} \cos\left[\varphi(n+\hat{\nu}) - \varphi(n) + \vartheta_{\nu}(n)\right] + \sum_n \left[M\ell(n) + \lambda\ell(n)^2\right]$$

Choose unitary gauge \Rightarrow eliminate $\varphi(n)$ variables

$$Z = \prod_{n,\nu} \int_{-\pi}^{\pi} \frac{\mathrm{d}\vartheta_{\nu}(n)}{2\pi} \prod_{n} \int_{0}^{\infty} \frac{\mathrm{d}\ell(n)}{2} \exp\left[-\beta S_{g} - S_{h}' - S_{\theta}\right]$$
$$S_{h}' = -\sum_{n} \sum_{\nu} 2\sqrt{\ell(n)\ell(n+\hat{\nu})} \cos\vartheta_{\nu}(n) + \sum_{n} \left[M\ell(n) + \lambda\ell(n)^{2}\right]$$

Discretization is necessary to construct tensor network representation Integral over l(n): Gauss-Laguerre quadrature Integral over $\vartheta(n)$: Gauss-Legendre quadrature

Discretized Action w/ Gauss Quadrature

$$Z \simeq Z(K_g, K_h)$$
$$= \prod_{n,\nu} \sum_{\tilde{\vartheta}_{\nu}(n) \in D_g} \frac{w_{\tilde{\vartheta}_{\nu}(n)}}{2} \prod_n \sum_{\tilde{\ell}(n) \in D_h} \frac{w_{\tilde{\ell}(n)} e^{\tilde{\ell}(n)}}{2} \exp\left[-\beta \tilde{S}_g - \tilde{S}'_h - \tilde{S}_\theta\right]$$

No. of sample points: (K_g, K_h) , weights: $(w_{\tilde{\vartheta}_v}, w_{\tilde{l}})$

$$\begin{split} \tilde{S}_{g} &= \begin{cases} \sum_{n} \frac{1 - \cos \pi \left(\tilde{\vartheta}_{1}(n) + \tilde{\vartheta}_{2}(n+\hat{1}) - \tilde{\vartheta}_{1}(n+\hat{2}) - \tilde{\vartheta}_{2}(n)\right)}{1 - \left[1 - \cos \pi \left(\tilde{\vartheta}_{1}(n) + \tilde{\vartheta}_{2}(n+\hat{1}) - \tilde{\vartheta}_{1}(n+\hat{2}) - \tilde{\vartheta}_{2}(n)\right)\right]/\epsilon} & \text{if admissible} \\ \infty & \text{otherwise} \end{cases} \\ \tilde{S}_{h}' &= -\sum_{n} \sum_{\nu} 2\sqrt{\tilde{\ell}(n)\tilde{\ell}(n+\hat{\nu})} \cos \pi \tilde{\vartheta}_{\nu}(n) + \sum_{n} \left[M\tilde{\ell}(n) + \lambda\tilde{\ell}(n)^{2}\right] \\ \tilde{S}_{\theta} &= -\frac{\mathrm{i}\theta}{2\pi} \sum_{n} \ln \left[\mathrm{e}^{\mathrm{i}\pi \left(\tilde{\vartheta}_{1}(n) + \tilde{\vartheta}_{2}(n+\hat{1}) - \tilde{\vartheta}_{1}(n+\hat{2}) - \tilde{\vartheta}_{2}(n)\right)}\right] \end{split}$$

Tensor network representation is constructed based on $Z(K_g, K_h)$ We employ Bond-Weighted TRG (BTRG) Adachi-Okubo-Todo, PRB105(2022)L0604020

Topological Freezing Problem

Hybrid Monte Carlo method for Lüscher action

No topology change w/ Lüscher action@ $\beta = 1.0, \epsilon = 1.0$ Note: Wilson action also has topological freezing problem at larger β

Pure U(1) Gauge Theory w/ θ -term (1)

Pure U(1) gauge = U(1) gauge-Higgs at $M \rightarrow \infty$ Parameter choice in this work: $\beta = 3.0$, $\epsilon = 1.0$

Pure U(1) Gauge Theory w/ θ -term (2)

X=2 at $\theta = \pi$ w/ $L \ge 2^{13} \Rightarrow$ Spontaneous Z₂ symmetry breaking

Pure U(1) Gauge Theory w/ θ -term (3)

Finite size scaling analysis on topological susceptibility

Fit results: p=2.00001(6), c_0 =-0.0196(6), c_1 =0.0009944(3) \Rightarrow 1st order phase transition ($\because \chi_{peak}(L) \propto V$)

U(1) Gauge-Higgs Model w/ θ -term (1)

Determination of critical endpoint M_c at $(\beta, \epsilon, \lambda) = (3.0, 1.0, 0.5)$

U(1) Gauge-Higgs Model w/ θ -term (2)

Identification of universality class Use of level spectroscopy Ueda-Oshikawa, PRB104(2021)165132, PRB108(2023)024413 eigenvalues of transfer matrix: $\lambda_0 \geq \lambda_1 \geq \lambda_2 \geq \cdots$ scaling dimension: $x_n(L) = \frac{1}{2\pi} \ln \frac{\lambda_0(L)}{\lambda_n(L)}$ *L* dependence of $x_{\text{cmb}}(L) = x_1(L) + \frac{1}{16}x_2(L)$ 0.5 0.4 crossing point $x_{\rm cmb}(L)$ 3 16 0.1 2.99745 2.99750 2.99740 2.99755 М

Crossing point at $M_c = 2.99748$ agrees w/ $2.99747 \le M_c \le 2.99748$ by X

Summary

(1+1)d U(1) gauge-Higgs model w/ θ -term

- Gauge action is constructed w/ Lüscher's admissibility condition
- Suffers from the complex action problem and the topological freezing problem
- TRG is free from both problems
- Critical endpoint at $\theta=\pi$ is successfully determined
- Confirm the scaling dimension is consistent w/ the 2d Ising universality class

BACKUP

Bond-Weighted TRG (1)

Adachi-Okubo-Todo, PRB105(2022)L0604020

Levin-Nave TRG: $T \approx U\sigma V \Rightarrow (U\sqrt{\sigma})(\sqrt{\sigma}V)$ Bond-Weighted TRG (BTRG): $T \approx U\sigma V \Rightarrow (U\sigma^{\frac{1-k}{2}})\sigma^k(\sigma^{\frac{1-k}{2}}V)$

 $\begin{aligned} A_{(x_0,y_0),i} &= U_{1(x_0,y_0),i} \sigma_{1ii}^{(1-k)/2}, \\ E_{i,j} &= \delta_{ij} \sigma_{1ii}^k, \\ B_{i,(x_1,y_1)} &= \sigma_{1ii}^{(1-k)/2} V_{1i,(x_1,y_1)}, \\ C_{(x_0,y_1),i} &= U_{2(x_0,y_1),i} \sigma_{2ii}^{(1-k)/2}, \\ F_{i,j} &= \delta_{ij} \sigma_{2ii}^k, \\ D_{i,(x_1,y_0)} &= \sigma_{2ii}^{(1-k)/2} V_{2i,(x_1,y_0)}. \end{aligned}$

Bond-Weighted TRG (2)

Comparison of performance

2d Ising model at the critical point on $2^{16} \times 2^{16}$ lattice

BTRG outperforms HOTRG and conventional TRG $k = -\frac{1}{2}$ seems optimal