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Plan of talk

• Brief Introduction to Tensor Renormalization Group(TRG)

• Current Status of TRG Application to QFTs

• (1+1)-dimensional U(1) gauge-Higgs model w/ 𝜃-term 

− Pure U(1) gauge theory w/ 𝑀 → ∞

− Determination of critical endpoint 𝑀!

• Summary



Tensor Renormalization Group (TRG)

Explain the algorithm with 2D Ising model with N sites

Details of model are specified in initial tensor
The algorithmic procedure is independent of  models

Of course, direct contraction is impossible for large N even with current 
fastest supercomputer   
⇒ How to evaluate the partition function?

H =
∑

⟨i,j⟩
sisj si ± 1

Z =
∑

{Si}
exp (−βH)

=
2∑

i,j,k,l,···=1
Ti,m,n,lTs,t,i,jTr,j,k,qTk,l,o,p · · ·

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

⟨O⟩ =
⟨Oeiθ⟩||
⟨eiθ⟩||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

U = 1 − 1

3

⟨X4⟩
⟨X2⟩2

1

Hamiltonian

Partition Function

Tensor Network representation

χ(L) =
1

L2

∂2 ln Z

∂(1/2κ)2

Z =
∫
DψDψ̄DU e−ψ̄D[U ]ψ−Sg[U ]

Ti,j,k,l ≃
Dcut∑

m=1
U(i,j),mσmVm,(k,l)

H =
∑

⟨i,j⟩
sisj si ± 1

Z =
∑

{si}
exp (−βH)

=
2∑

α,β,γ,δ,···=1
Tα,λ,ρ,δTσ,κ,α,βTµ,β,γ,τTγ,δ,ν,χ · · ·

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

1

Levin-Nave 
PRL99(2007)120601
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Schematic View of TRG Algorithm
1. Singular Value Decomposition of local tensor T
2. Contraction of old tensor indices (coarse-graining)
3. Repeat the iteration  

Keep largest Dcut components
⇒ Reduction of d.o.f.

#sites are reduced to half

Tensors 
w/ new indices



TRG vs Monte Carlo

Advantages of TRG
・ Free from sign problem/complex action problem in MC method

・ Computational cost for LD system size ∝ D×log(L)
・ Direct manipulation of Grassmann numbers
・ Direct evaluation of partition function Z (density matrix ρ) itself

Applications in particle physics：
Finite density QCD, QFTs w/ θ-term, Lattice SUSY etc.

Also, in condensed matter physics
Hubbard model (Mott transition, High Tc superconductivity) etc.

Z =
∫
Dφ exp(−SRe[φ] + iSIm[φ])

Z =
⎛

⎝
∏

x,µ

∫ π

−π

dϕx,µ

2π

⎞

⎠
∏

x
T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2)

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2) = exp
⎛

⎝β cos px + i
θ

2π
qx

⎞

⎠

Z =
⎛

⎝
∏

x,µ

∫ π

−π

dϕx,µ

2π

⎞

⎠ exp (−S)

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

T (new)
o,n,m,p =

∑

i,j,k,l
(S4){l,k},o (S3){k,j},n (S2){j,i},m (S1){i,l},p

Ti,j,k,l ≃
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

1

Monte Carlo
stochastic

TRG
deterministic

antithetical principles
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TRG Approaches to QFTs (1)

2d models
Real φ4 theory：

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP05(2019)184
Complex φ4 theory w/ 𝜇≠0：

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP02(2020)161
U(1) gauge theory w/ 𝜃-term：

YK-Yoshimura, JHEP04(2020)089
Schwinger(2d QED), Schwinger w/ 𝜃-term：

Shimizu-YK, PRD90(2014)014508, 074503, PRD97(2018)034502 
N=1 Wess-Zumino model (SUSY)：

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP03(2018)141
SU(2) principal chiral model w/ 𝜇≠0：

Luo-YK, PRD107(2023)094509
O(3) nonlinear 𝜎 model w/ 𝜇≠0 and 𝜇=0：

Luo-YK, JHEP03(2024)020, arXiv:2406.08865

Application to various models w/ sign problem，
Development of calculational methods for scalar, fermion and gauge fields

w/ sign problem
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TRG Approaches to QFTs (2)

3d models
Z2 gauge-Higgs model w/ 𝜇≠0：Akiyama-YK,JHEP05(2022)102
Real φ4 theory：Akiyama-YK-Yoshimura, PRD104(2021)034507
Z2gauge theory at T≠0： YK-Yoshimura, JHEP08(2019)023

4d models
Ising model：Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510
Complex φ4 theory w/ 𝜇≠0 ：

Akiyama-Kadoh-YK-Yamashita-Yoshimura, JHEP09(2020)177
NJL model w/ 𝜇≠0 ：

Akiyama-YK-Yamashita-Yoshimura, JHEP01(2021)121
Real φ4 theory：Akiyama-YK-Yoshimura, PRD104(2021)034507
Z2 gauge-Higgs model w/ 𝜇≠0：Akiyama-YK, JHEP05(2022)102
Z3 gauge-Higgs model w/ 𝜇≠0：Akiyama-YK, JHEP10(2023)077

⇒ Research target is shifting from 2d models to 4d ones

w/ sign problem
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TRG Approaches to QFTs (3)

Condensed matter physics
Similarity btw Hubbard models and NJL ones
Action consisting of hopping terms and 4-fermi interaction term

First principle calculation at finite density
(1+1)d Hubbard model：Akiyama-YK, PRD104(2021)014504
(2+1)d Hubbard model：Akiyama-YK-Yamashita, PTEP2022(2022)023I01

sufficiently large to be identified as the thermodynamic
and zero-temperature limit. The half-filling state is char-
acterized by the plateau with hni ¼ 1 in the range of
1.3≲ μ≲ 2.7. We also observe the continuous change from
hni ¼ 1 to hni ¼ 2 over the range of 2.7≲ μ≲ 6.5.
Figure 6 shows μ dependence of hni near the criticality
on V ¼ 4096 × 1677.7216. The abrupt change of hni at
μ ≈ 2.70 in Fig. 6 indicates a metal-insulator transition.
We determine the critical chemical potential μcðDÞ and

the critical exponent ν on V ¼ 4096 × 1677.7216 lattice by
fitting hni in the metallic phase around the transition point
with the following form:

hni ¼ Aþ Bjμ − μcðDÞjν; ð8Þ

where A, B, μcðDÞ and ν are the fit parameters. The solid
curve in Fig. 6 shows the fitting result over the range of
2.68 ≤ μ ≤ 3.00. We obtain μcðDÞ ¼ 2.698ð1Þ and ν ¼
0.51ð2Þ at D ¼ 80. Our result for the critical exponent is
consistent with the theoretical prediction of ν ¼ 1=2. A
previous quantumMonte Carlo simulation with small spatial
extensionup toL ¼ 24 alsoyielded the sameconclusion [22].
In order to extrapolate the result of μcðDÞ to the limit

D → ∞, we repeat the calculation changing D. The
numerical results are summarized in Table III. In Fig. 7,
we plot μcðDÞ as a function of 1=D, providing two types of
fittings. The solid line shows the fitting result with the

function μcðDÞ ¼ μc þ aD−1, which gives us μc ¼
2.642ð5Þ and a ¼ 4.5ð4Þ with χ2=d:o:f ¼ 0.447093. We
have also fitted the data with the function μcðDÞ ¼ μc þ
bD−c, shown as the dotted curve in Fig. 7, to estimate an
uncertainty in the choice of the fitting function. The
difference between the central values of μc obtained by
these two types of fittings is considered to be a systematic
error. Finally, we obtain μc ¼ 2.642ð05Þð13Þ as the value
of limD→∞ μcðDÞ, which shows good consistency with
the exact solution of μc ¼ 2.643 % % % based on the Bethe
ansatz [16,17].

IV. SUMMARY AND OUTLOOK

We have investigated the metal-insulator transition of the
(1þ 1)d Hubbard model in the path-integral formalism
employing the TRG method. Extrapolating μcðDÞ to the
limit D → ∞, we have estimated the critical chemical
potential, which shows good consistency with the theo-
retical prediction based on the Bethe ansatz. We have
determined the critical exponent ν, which is also consistent
with the exact solution. These encouraging results show the
effectiveness of the TRG approach for the study of the
Hubbard model and the related fermion models being free
from the sign problem. It is worth emphasizing that the
TRG approach is efficient not only in the lower-dimen-
sional systems but also in the higher-dimensional ones, as
confirmed in the earlier works [2,4–7,14,15,23–26]. As a
next step, we are planning to investigate the phase diagram
of the higher-dimensional Hubbard models, improving the
TRG method successfully applied in this work.
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APPENDIX: GRASSMANN TENSOR FOR
(d + 1)-DIMENSIONAL HUBBARD MODEL

In this Appendix, we consider the tensor network
representation for the path integral of the (dþ 1)-dimen-
sional Hubbard model, whose action is given by

S¼
X

n∈Λdþ1

ϵ
!
ψ̄ðnÞ

"
ψðnþ τ̂Þ−ψðnÞ

ϵ

#
− t

Xd

σ¼1

ðψ̄ðnþ σ̂ÞψðnÞþ ψ̄ðnÞψðnþ σ̂ÞÞþU
2
ðψ̄ðnÞψðnÞÞ2 −μψ̄ðnÞψðnÞ

$
; ðA1Þ

where n ¼ ððnσÞσ¼1;…;d; nτÞ ∈ Λdþ1, which denotes the (dþ 1)-dimensional anisotropic lattice. Since the hopping terms in
Eq. (A1) are all diagonal in the internal space, we can immediately have the following decompositions,

0.000 0.005 0.010 0.015 0.020
1/D

2.64

2.66

2.68

2.70

2.72

2.74

µ c(D
)

µc+aD
-1

µc+bD
-c

FIG. 7. Critical chemical potential μcðDÞ as a function of 1=D.
Solid line represents the fitting result with the function
μcðDÞ ¼ μc þ aD−1. Dotted curve also shows the fitting result
with the function μcðDÞ ¼ μc þ bD−c.

TENSOR RENORMALIZATION GROUP APPROACH TO (1þ 1)- … PHYS. REV. D 104, 014504 (2021)

014504-5

(1+1)d U(1) gauge Higgs model w/ 𝜃-term imposing Lüscher’s admissibility condition
Simultaneous solution to complex action problem 

and topological freezing problem

cf. dual simulation w/o Lüscher’s admissibility condition

w/ sign problem

Gattringer+, PRD92(2015)114508, NPB935(2018)344



(1+1)d lattice U(1) gauge-Higgs model w/ 𝜃-term

Action and expected phase diagram
2.2 Tensor network formulation

We consider the tensor network representation of the path integral defined as

Z =
Y

n,⌫

Z ⇡

�⇡

d#⌫(n)

2⇡

Y

n

Z

C

d�(n)

2⇡
exp(�S). (2.6)

Parametrizing the complex-valued Higgs field by �(n) = r(n)ei'(n), the integral measure is

represented as
Z

C

d�(n)

2⇡
=

Z 1

0
r(n)dr(n)

Z ⇡

�⇡

d'(n)

2⇡
, (2.7)

and Sh reads

Sh = �
X

n

X

⌫

2r(n)r(n+ ⌫̂) cos ['(n+ ⌫̂)� '(n) + #⌫(n)] +
X

n

⇥
Mr(n)2 + �r(n)4

⇤
.

(2.8)

We further introduce `(n) = r(n)2 and rewrite Eq. (2.8) as

Sh = �
X

n

X

⌫

2
p
`(n)`(n+ ⌫̂) cos ['(n+ ⌫̂)� '(n) + #⌫(n)] +

X

n

⇥
M`(n) + �`(n)2

⇤
.

(2.9)

Using the invariance of the Haar measure, or choosing the unitary gauge, we can eliminate

'(n) from the path integral,

Z =
Y

n,⌫

Z ⇡

�⇡

d#⌫(n)

2⇡

Y

n

Z 1

0

d`(n)

2
exp

⇥
��Sg � S0

h � S✓

⇤
, (2.10)

with

S0
h = �

X

n

X

⌫

2
p
`(n)`(n+ ⌫̂) cos#⌫(n) +

X

n

⇥
M`(n) + �`(n)2

⇤
. (2.11)

In this study, we use the Gauss-Laguerre quadrature rule to discretize the integral over

`(n) and the Gauss-Legendre one for #⌫(n). The e�cacy of these Gauss quadrature rules

has been reported in the previous TRG studies for the U(1) pure gauge theory with a ✓

term [21] and complex �4 theories [20, 40]. The path integral is now approximated by

Z ' Z(Kg,Kh)

=
Y

n,⌫

X

#̃⌫(n)2Dg

w#̃⌫(n)

2

Y

n

X

˜̀(n)2Dh

w˜̀(n)e
˜̀(n)

2
exp

h
��S̃g � S̃0

h � S̃✓

i
, (2.12)

where

S̃g =

8
>>><

>>>:

X

n

1� cos⇡
⇣
#̃1(n) + #̃2(n+ 1̂)� #̃1(n+ 2̂)� #̃2(n)

⌘

1�
h
1� cos⇡

⇣
#̃1(n) + #̃2(n+ 1̂)� #̃1(n+ 2̂)� #̃2(n)

⌘i
/✏

if admissible

1 otherwise

,

(2.13)
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in the fixed topological sectors [2–5] or to utilize open boundary conditions, dismissing the

translational invariance of the system [6].

However, this problem is potentially solved by the tensor renormalization group (TRG)

method. 1 The major advantages of the TRG method over the Monte Carlo simulation

are (i) no sign problem [15–27], (ii) logarithmic computational cost on the system size,

(iii) direct manipulation of the Grassmann variables [8, 10, 11, 28–35], and (iv) evaluation

of the partition function or the path integral itself. The advantage (iv) ensures that the

TRG calculation automatically includes full contributions from di↵erent topological sectors.

Moreover, the TRG method assumes the translational invariance of the system and can

easily impose periodic boundary conditions.

In this paper, we investigate the phase structure of the (1+1)-dimensional ((1+1)d)

U(1) gauge-Higgs model with a ✓ term, where the topological e↵ects play an essential role,

employing Lüscher’s gauge action of Eq. (1.3). The Monte Carlo simulation of this model

is extremely di�cult due to a double whammy of the complex action problem and the

topological freezing. Figure 1 illustrates the expected phase diagram [36]. The model ex-

hibits the first-order phase transition at ✓ = ⇡, where the Z2 charge conjugation symmetry

is spontaneously broken in the large positive Higgs mass-squared regime, including the

pure gauge limit. 2 Once the Higgs mass-squared is su�ciently reduced, the symmetry

is restored. We determine the critical endpoint as a function of the Higgs mass-squared

and show its critical behavior is in the 2d Ising universality class based on the numerical

analysis of the transfer matrix and topological charge density. We also compare our results

with the previous work employing the dual lattice simulation based on the Villain gauge

action, which is a non-compact gauge action on the lattice [39].

This paper is organized as follows. In Sec. 2, we define the U(1) gauge-Higgs model

with a ✓ term on a (1+1)d lattice. We also demonstrate how to represent the path integral

as a tensor network. In Sec. 3, we first present the results for the pure U(1) gauge action

which corresponds to the infinitely heavy limit of the Higgs mass, where the first-order

phase transition takes place at ✓ = ⇡. After that, we discuss the phase transition with

the finite lattice Higgs mass and determine the critical endpoint and its universality class.

Section 4 is devoted to summary and outlook.

2 Tensor network formulation

2.1 The model on a lattice

The U(1) gauge-Higgs model with a ✓ term is defined by

S = �Sg + Sh + S✓. (2.1)

1In this paper, the “TRG method” or the “TRG approach” refers to not only the original numerical

algorithm proposed by Levin and Nave [7] but also its extensions [8–14].
2There are several earlier studies on the 2d pure gauge theory with a ✓ term by the density of state

approach [37], complex Langevin method [38], and TRG [21, 27].
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Figure 1: Schematic phase diagram of (1+1)d U(1) gauge-Higgs model with a ✓ term.

The horizontal axis denotes the Higgs mass-squared. The red line denotes the first-order

phase transition, which terminates at the critical endpoint expressed by the red blob.

We always consider the model on a square lattice with periodic boundary conditions. We

employ the Lüscher gauge action,

Sg =

8
><

>:

X

n

1� ReP12(n)

1� [1� ReP12(n)]/✏
if “admissible”

1 otherwise

, (2.2)

where P12(n) is defined by Eq. (1.2) with U⌫(n) = ei#⌫(n) and #⌫(n) 2 [�⇡,⇡]. The

admissibility condition is given by

1� ReP12(n) < ✏. (2.3)

When this condition is satisfied, the corresponding gauge fields are called admissible. The

admissibility condition makes gauge fields smooth and unphysical configurations are sup-

pressed. The space of admissible gauge fields is separated into disconnected subspaces which

are labeled by the integers corresponding to topological charges in the continuum [1]. The

Higgs part is defined by

Sh = �
X

n

X

⌫

[�⇤(n)U⌫(n)�(n+ ⌫̂) + �⇤(n+ ⌫̂)U⇤
⌫ (n)�(n)]

+M
X

n

|�(n)|2 + �
X

n

|�(n)|4 . (2.4)

The complex-valued Higgs fields are denoted by �(n) and M = m2 + 4 is the lattice Higgs

mass where m corresponds to the Higgs mass parameter in the continuum action. The

quartic coupling constant is denoted by �. Finally, the ✓ term is defined by

S✓ = � i✓

2⇡

X

n

lnP12(n). (2.5)
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employ the Lüscher gauge action,

Sg =

8
><

>:

X

n

1� ReP12(n)

1� [1� ReP12(n)]/✏
if “admissible”

1 otherwise

, (2.2)

where P12(n) is defined by Eq. (1.2) with U⌫(n) = ei#⌫(n) and #⌫(n) 2 [�⇡,⇡]. The

admissibility condition is given by

1� ReP12(n) < ✏. (2.3)

When this condition is satisfied, the corresponding gauge fields are called admissible. The

admissibility condition makes gauge fields smooth and unphysical configurations are sup-

pressed. The space of admissible gauge fields is separated into disconnected subspaces which

are labeled by the integers corresponding to topological charges in the continuum [1]. The

Higgs part is defined by

Sh = �
X

n

X

⌫

[�⇤(n)U⌫(n)�(n+ ⌫̂) + �⇤(n+ ⌫̂)U⇤
⌫ (n)�(n)]

+M
X

n

|�(n)|2 + �
X

n

|�(n)|4 . (2.4)

The complex-valued Higgs fields are denoted by �(n) and M = m2 + 4 is the lattice Higgs

mass where m corresponds to the Higgs mass parameter in the continuum action. The

quartic coupling constant is denoted by �. Finally, the ✓ term is defined by

S✓ = � i✓

2⇡

X

n

lnP12(n). (2.5)

– 3 –

!!

" = $
" = 0, 2$

"

Figure 1: Schematic phase diagram of (1+1)d U(1) gauge-Higgs model with a ✓ term.

The horizontal axis denotes the Higgs mass-squared. The red line denotes the first-order

phase transition, which terminates at the critical endpoint expressed by the red blob.

We always consider the model on a square lattice with periodic boundary conditions. We
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employ the Lüscher gauge action,

Sg =

8
><

>:

X

n

1� ReP12(n)

1� [1� ReP12(n)]/✏
if “admissible”

1 otherwise

, (2.2)

where P12(n) is defined by Eq. (1.2) with U⌫(n) = ei#⌫(n) and #⌫(n) 2 [�⇡,⇡]. The

admissibility condition is given by

1� ReP12(n) < ✏. (2.3)

When this condition is satisfied, the corresponding gauge fields are called admissible. The

admissibility condition makes gauge fields smooth and unphysical configurations are sup-

pressed. The space of admissible gauge fields is separated into disconnected subspaces which

are labeled by the integers corresponding to topological charges in the continuum [1]. The

Higgs part is defined by

Sh = �
X

n

X

⌫

[�⇤(n)U⌫(n)�(n+ ⌫̂) + �⇤(n+ ⌫̂)U⇤
⌫ (n)�(n)]

+M
X

n

|�(n)|2 + �
X

n

|�(n)|4 . (2.4)

The complex-valued Higgs fields are denoted by �(n) and M = m2 + 4 is the lattice Higgs

mass where m corresponds to the Higgs mass parameter in the continuum action. The

quartic coupling constant is denoted by �. Finally, the ✓ term is defined by

S✓ = � i✓

2⇡

X

n

lnP12(n). (2.5)

– 3 –

!!

" = $
" = 0, 2$

"

Figure 1: Schematic phase diagram of (1+1)d U(1) gauge-Higgs model with a ✓ term.

The horizontal axis denotes the Higgs mass-squared. The red line denotes the first-order

phase transition, which terminates at the critical endpoint expressed by the red blob.

We always consider the model on a square lattice with periodic boundary conditions. We
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Complex-valued Higgs field is reparameteized by 𝜙 𝑛 = 𝑙(𝑛)𝑒#$(&)

Choose unitary gauge ⟹ eliminate 𝜑(𝑛) variables

Discretization is necessary to construct tensor network representation

Integral over 𝑙(𝑛): Gauss-Laguerre quadrature

Integral over 𝜗(𝑛): Gauss-Legendre quadrature

Reparametrization of Higgs field 

2.2 Tensor network formulation

We consider the tensor network representation of the path integral defined as

Z =
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Z ⇡

�⇡
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Z
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exp(�S). (2.6)

Parametrizing the complex-valued Higgs field by �(n) = r(n)ei'(n), the integral measure is

represented as
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(2.8)

We further introduce `(n) = r(n)2 and rewrite Eq. (2.8) as
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2
p
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X

n

⇥
M`(n) + �`(n)2
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(2.9)

Using the invariance of the Haar measure, or choosing the unitary gauge, we can eliminate

'(n) from the path integral,
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⇤
. (2.11)

In this study, we use the Gauss-Laguerre quadrature rule to discretize the integral over

`(n) and the Gauss-Legendre one for #⌫(n). The e�cacy of these Gauss quadrature rules

has been reported in the previous TRG studies for the U(1) pure gauge theory with a ✓

term [21] and complex �4 theories [20, 40]. The path integral is now approximated by
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Y
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i
, (2.12)

where

S̃g =
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>>>:
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⇣
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1 otherwise

,

(2.13)
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No. of sample points: (𝐾( , 𝐾)),   weights: (𝑤*+! , 𝑤,-)

Discretized Action w/ Gauss Quadrature 
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S̃0
h = �

X
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X

⌫

2
q

˜̀(n)˜̀(n+ ⌫̂) cos⇡#̃⌫(n) +
X

n
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M ˜̀(n) + �˜̀(n)2

i
, (2.14)

S̃✓ = � i✓

2⇡

X

n

ln
h
ei⇡(#̃1(n)+#̃2(n+1̂)�#̃1(n+2̂)�#̃2(n))

i
. (2.15)

In Eq. (2.12), ˜̀(n) denotes the sampling point according to the Gauss-Laguerre quadrature

and w˜̀(n) is the corresponding weight. The number of sampling points in Dh is denoted

by Kh. Similarly, #̃⌫(n) denotes the sampling point according to the Gauss-Legendre

quadrature and w#̃⌫(n)
is the corresponding weight. The number of sampling points in Dg

is denoted by Kg. In the limits of Kg ! 1 and Kh ! 1, the original path integral is

restored. Eq. (2.12) is ready to be described as a tensor network. We introduce four-leg

pure gauge tensors on each plaquette as follows,
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0
g

=

8
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�⇤
/✏

#
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0 otherwise

,

(2.16)
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0
g
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✓
i✓

2⇡
ln

h
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0
g+xg�yg�x0

g)
i◆

. (2.17)

For the Higgs part, we introduce the following hopping matrix,

H˜̀(n)✓̃⌫(n)˜̀(n+⌫̂)

=
4
p
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(˜̀(n)+˜̀(n+⌫̂))/4

p
2

⇥ exp


2
q
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M

4
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⌘
� �

4

⇣
˜̀(n)2 + ˜̀(n+ ⌫̂)2

⌘�
.

(2.18)

Now, we perform the singular value decomposition (SVD) of the ⌫-directional hopping

matrix, which gives us
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where A and B are defined by unitary matrices multiplied by the square root of singular
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In Eq. (2.12), ˜̀(n) denotes the sampling point according to the Gauss-Laguerre quadrature

and w˜̀(n) is the corresponding weight. The number of sampling points in Dh is denoted
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Tensor network representation is constructed based on 𝑍(𝐾( , 𝐾))
We employ Bond-Weighted TRG (BTRG) Adachi-Okubo-Todo, PRB105(2022)L0604020



Hybrid Monte Carlo method for Lüscher action

No topology change w/ Lüscher action@𝛽 = 1.0, 𝜖 = 1.0
Note: Wilson action also has topological freezing problem at larger 𝛽

Topological Freezing Problem

sources of errors is the truncation in the topological sectors,
since summation with topological charge for N!4 does not
show a satisfactory saturation unlike the case of the pion.
Therefore further studies with a sufficiently larger number of
topological sectors are necessary to confirm the stability of
the data against the truncation. One also needs new ideas for
efficiently reducing the statistical errors.

V. SUMMARY AND DISCUSSION

In this paper, we elucidate the role of the admissibility
condition on the topological and chiral properties in lattice
gauge theories by applying Lüscher’s action together with
domain wall fermions to a numerical simulation of the mas-
sive Schwinger model. To investigate the "-dependence of
the correlators, we have developed a method to sum over
different topological sectors. We have found that Lüscher’s
action is indeed applicable to Monte Carlo simulations and
all the results are consistent with those in the continuum
theory, confirming the validity of our method.
We summarize the features of this action here again. #1$

In Lüscher’s action, the gauge field strength is uniquely de-
termined from the plaquette and the gauge action is a smooth
function of the field strength. #2$ The range of the action is
not compact;

0!SG!% . #37$

This is the same situation as continuum theory. We can treat
the theory in terms of the field strength rather than
plaquettes. According to these features, Lüscher’s gauge ac-
tion has many advantages.

#1$ The use of this gauge action with the domain wall fer-
mion action is valid even for the strong coupling regime
since unphysical configurations are suppressed. #We find
the suppression effect is especially remarkable in
quenched approximation as discussed in the Appendix.$

#2$ We can treat the topological properties of the lattice
theories precisely. This exact topological treatment is

useful not only mathematically but also in a practical
point of view. In the conventional approach, there are
two technical problems, i.e., violation of chirality at
strong coupling and the slowing down of the topology
change in unquenched simulation. For the former prob-
lem, the improved gauge actions which suppress the dis-
locations are proposed. However, in principle the sup-
pression of the dislocations also suppresses the topology
change so that the latter problem becomes even more
difficult. Our method makes the improvement to the ex-
treme and prohibits both the dislocation and the topology
change completely, however, by computing each topo-
logical sector and its reweighting factor we can reconcile
the solutions to the topology change problem and the
dislocation problem at the same time.

#3$ Once each topological sector can be computed sepa-
rately, we can obtain a " dependence at once.

#4$ Aside from the fact that we must simulate for each sector
the typical simulation, time needed for the trivial topo-
logical sector is no larger than that of using Wilson’s
plaquette action. For the nonzero topological charge sec-
tor, one can also increase the statistics at will very effi-
ciently, in contrast to the conventional method where one
can increase the statistics only by reaching the thermal
equilibrium. In this sense, our method would have ad-
vantages in physical quantities for which the topological
sectors with larger instanton numbers give larger contri-
butions.

It will be interesting to explore the possibility of applying
Lüscher’s type of gauge action to QCD in four dimensions.
The reweighting factor, however, would not be easy to cal-
culate since the Dirac matrix is very large and the exact
topological index as well as the structure of the gauge field
space are much more complicated in four-dimensional torus
&9'. Moreover, one should find the minimum of the gauge
action in each sector since the self-dual classical solutions
are not known in some cases. We still hope that the under-
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FIG. 18. The Monte Carlo evolutions of the topological charge in the quenched calculation with Wilson’s gauge action and Lüscher’s
gauge action for the gauge couplings having the same string tension. Left: Wilson’s gauge action at ("3.4. Right: Lüscher’s gauge action
at ("1.0. Lüscher’s gauge action shows no topology change.
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sources of errors is the truncation in the topological sectors,
since summation with topological charge for N!4 does not
show a satisfactory saturation unlike the case of the pion.
Therefore further studies with a sufficiently larger number of
topological sectors are necessary to confirm the stability of
the data against the truncation. One also needs new ideas for
efficiently reducing the statistical errors.

V. SUMMARY AND DISCUSSION

In this paper, we elucidate the role of the admissibility
condition on the topological and chiral properties in lattice
gauge theories by applying Lüscher’s action together with
domain wall fermions to a numerical simulation of the mas-
sive Schwinger model. To investigate the "-dependence of
the correlators, we have developed a method to sum over
different topological sectors. We have found that Lüscher’s
action is indeed applicable to Monte Carlo simulations and
all the results are consistent with those in the continuum
theory, confirming the validity of our method.
We summarize the features of this action here again. #1$

In Lüscher’s action, the gauge field strength is uniquely de-
termined from the plaquette and the gauge action is a smooth
function of the field strength. #2$ The range of the action is
not compact;

0!SG!% . #37$

This is the same situation as continuum theory. We can treat
the theory in terms of the field strength rather than
plaquettes. According to these features, Lüscher’s gauge ac-
tion has many advantages.

#1$ The use of this gauge action with the domain wall fer-
mion action is valid even for the strong coupling regime
since unphysical configurations are suppressed. #We find
the suppression effect is especially remarkable in
quenched approximation as discussed in the Appendix.$

#2$ We can treat the topological properties of the lattice
theories precisely. This exact topological treatment is

useful not only mathematically but also in a practical
point of view. In the conventional approach, there are
two technical problems, i.e., violation of chirality at
strong coupling and the slowing down of the topology
change in unquenched simulation. For the former prob-
lem, the improved gauge actions which suppress the dis-
locations are proposed. However, in principle the sup-
pression of the dislocations also suppresses the topology
change so that the latter problem becomes even more
difficult. Our method makes the improvement to the ex-
treme and prohibits both the dislocation and the topology
change completely, however, by computing each topo-
logical sector and its reweighting factor we can reconcile
the solutions to the topology change problem and the
dislocation problem at the same time.

#3$ Once each topological sector can be computed sepa-
rately, we can obtain a " dependence at once.

#4$ Aside from the fact that we must simulate for each sector
the typical simulation, time needed for the trivial topo-
logical sector is no larger than that of using Wilson’s
plaquette action. For the nonzero topological charge sec-
tor, one can also increase the statistics at will very effi-
ciently, in contrast to the conventional method where one
can increase the statistics only by reaching the thermal
equilibrium. In this sense, our method would have ad-
vantages in physical quantities for which the topological
sectors with larger instanton numbers give larger contri-
butions.

It will be interesting to explore the possibility of applying
Lüscher’s type of gauge action to QCD in four dimensions.
The reweighting factor, however, would not be easy to cal-
culate since the Dirac matrix is very large and the exact
topological index as well as the structure of the gauge field
space are much more complicated in four-dimensional torus
&9'. Moreover, one should find the minimum of the gauge
action in each sector since the self-dual classical solutions
are not known in some cases. We still hope that the under-
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pure U(1)@𝛽 = 1.0, 𝜖 = 1.0pure U(1)@𝛽 = 3.4

lattice spacing a!1, where L3 is the length of the third
direction for the domain wall fermions !20,21". The action is
defined as follows:

S!#SG"SF , $13%

SG!! &
P

!1#Re P'($x %"

1#!1#Re P'($x %"/)
if admissible,

* otherwise,
$14%

SF!&
x ,x!

&
s ,s!

&
i!1

2

!+̄s
i $x %DDW$x ,s;x!,s!%+s!

i $x!%

",s
i*$x %DAP$x ,s;x!,s!%,s!

i $x!%" , $15%

where

DDW$x ,s;x!,s!%

!
1
2 &

'!1

2

-$1".'%U'$x %/x"'̂ ,x!/s ,s!

"$1#.'%U'
† $x#'̂ %/x#'̂ ,x!/s ,s!0

"$M#3 %/x ,x!/s ,s!"P"/s"1,s!/x ,x!

"P#/s#1,s!/x ,x!"$m#1 %P"/s ,L3/s!,1/x ,x!

"$m#1 %P#/s ,1/s!,L3/x ,x! ,

DAP$x ,s;x!,s!%

!
1
2 &

'!1

2

-$1".'%U'$x %/x"'̂ ,x!/s ,s!

"$1#.'%U'
† $x#'̂ %/x#'̂ ,x!/s ,s!0

"$M#3 %/x ,x!/s ,s!"P"/s"1,s!/x ,x!

"P#/s#1,s!/x ,x!#2P"/s ,L3/s!,1/x ,x!

#2P#/s ,1/s!,L3/x ,x! . $16%

#!1/g2, M is a constant satisfying 0$M$1, &P denotes
summation over all plaquettes, and P% are the chiral projec-
tion operators;

P%!
1%.3
2 . $17%

m is the fermion mass. , i’s are Pauli-Villars regulators
which cancel the bulk contribution.
Since it is not possible to change the topological charge

by a local updating under the admissibility condition, our
lattice theory with Lüscher’s gauge action has a topological
invariant,

N!#
i
21 &

x
ln P12$x %. $18%

This charge corresponds to Eq. $6% and gauge field configu-
rations are classified into topological sectors. Each sector
characterized by N has the classical gauge configuration
U'
cl(x ,y) minimizing the action, which is given in Eq. $7.10%

of Ref. !8" as

U1
cl[N]$x ,y %!exp! 21i(1

L #
21Ni
L /x ,Ly " ,

U2
cl[N]$x ,y %!exp! 21i(2

L "
21Ni

L2
x" , $19%

up to gauge transformations, where (1 and (2 are the param-
eters which determine the values of Wilson lines in x and y
directions. (1,2 can take any values in the region 02(1,2
$1. This configuration gives constant background electric
fields over the torus.

III. LATTICE SIMULATIONS

A. Observables in each sector

The simulation is carried out by the hybrid Monte Carlo
method with Lüscher’s gauge action in Eq. $14%. The matrix
inversions are calculated by the conjugate gradient algo-
rithm.
We take a 16&16&6 lattice at #!1/g2!0.5 and M

!0.9. The parameter for the admissibility condition is cho-
sen as )!1.0. At this value of ) , we find that initial topo-
logical charge is not changed through the simulation. $See
Fig. 1.% For the fermion mass, we choose m
!0.1,0.2,0.3,0.4. Fifty molecular dynamics steps with a step
size 34!0.02 are performed in one trajectory of the hybrid
Monte Carlo algorithm. Configurations are updated per ten
trajectories. We generate 500 configurations for each topo-
logical sector by taking the classical configuration in Eq.
$19% as the initial configuration. From the set of configura-
tions in each sector with topological charge N, we measure
the isotriplet meson propagator

C1$x %!&
y

51$x ,y %1$0,0%6# ,m
N , $20%

and the isosinglet meson propagator

C7$x %!&
y

57$x ,y %7$0,0%6# ,m
N , $21%

where 5 6# ,m
N denotes the expectation value in the N sector.

B. A new method of summing over different
topological sectors

The hybrid Monte Carlo simulation is performed by small
changes of link variables. Thus choosing the configuration
given by Eq. $19% as the initial condition, we can generate
configurations without changing the topological charge for
any value of the coupling constant.

LATTICE STUDY OF THE MASSIVE SCHWINGER . . . PHYSICAL REVIEW D 68, 074503 $2003%
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Pure U(1) gauge = U(1) gauge-Higgs at 𝑀→∞ 

Parameter choice in this work: 𝛽 = 3.0, 𝜖 = 1.0

topological charge density:

Clear jump at 𝜃 = 𝜋 w/ 𝐿 ≥ 2!. ⇒ 1st order phase transition

Spontaneous Z2 symmetry breaking

At ✓ = ⇡, the theory is expected to undergo the first-order transition. We calculate

the topological charge density hQi/V , which is defined by

hQi
V

= � i

V

@ lnZ

@✓
. (3.1)

Figure 2 shows the volume dependence of hQi/V at � = 3.0 as a function of ✓. We set

D = Kg = 30 and employed the numerical di↵erentiation to evaluate Eq. (3.1). As the

volume increases, the topological charge density gradually becomes discontinuous and we

observe a clear jump at ✓ = ⇡ with L � 213. This is a signal of the first-order transition at

✓ = ⇡.

0.85 0.90 0.95 1.00 1.05 1.10 1.15

θ/π

-0.02

-0.01

0.00

0.01

0.02

<
Q

>
/V

L = 2
3

L = 2
5

L = 2
7

L = 2
9

L = 2
11

L = 2
13

L = 2
15

Figure 2: Topological charge density for the pure U(1) gauge theory as a function of ✓/⇡

at � = 3.0 with D = Kg = 30.

Taking advantage of the TRG method, we also compute the ground state degeneracy

by introducing

X =
(TrA)2

Tr (A2)
, (3.2)

following Ref. [45]. After su�cient times of coarse-graining, this quantity counts the ground

state degeneracy. In Eq. (3.2), A is a transfer matrix defined from the local tensor via

Ayy0 =
X

x

Txyxy0 . (3.3)

Figure 3 shows X in Eq. (3.2) as a function of ✓. With su�ciently large volume, X = 2 is

realized only at ✓ = ⇡. Therefore, the current TRG computation successfully reproduces

the spontaneous Z2 symmetry breaking at ✓ = ⇡ as expected.
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Pure U(1) Gauge Theory w/ 𝜃-term (1)

𝐷 = 𝐾! = 30
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Measurement of ground state degeneracy 

X=2 at 𝜃 = 𝜋 w/ 𝐿 ≥ 2!. ⇒ Spontaneous Z2 symmetry breaking

Pure U(1) Gauge Theory w/ 𝜃-term (2)
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Figure 3: The ground state degeneracy X of Eq. (3.2) for the pure U(1) gauge theory as

a function of ✓/⇡ at � = 3.0 with D = Kg = 30.

Additionally, we apply the finite-size scaling analysis for the topological susceptibility,

which is given by
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. (3.4)

We use the numerical di↵erentiation with the O(�4) accuracy, setting � = ⇡⇥10�5 around

✓ = ⇡, to evaluate Eq. (3.4). Since the peak of the topological susceptibility always appears

at ✓ = ⇡, we examine the system size dependence of the values of �Q at ✓ = ⇡. Let �peak(L)

be the value of �Q at ✓ = ⇡ with the linear system size L. Using the following ansatz,

�peak(L) = c0 + c1L
p, (3.5)

the data of �peak(L) are fitted as shown in Figure 4. The fit is performed on the data over

L 2 [4, 256
p
2] and we obtain p = 2.00001(6), c0 = �0.0196(6), and c1 = 0.0009944(3).

Therefore, �peak(L) is proportional to the volume and this is another indication of the

first-order phase transition. Although we employed the finite bond dimension D and cuto↵

Kg, the current computation correctly reproduces the first-order phase transition at ✓ = ⇡.

We have also tried the same analysis with D = Kg = 20, which results in p = 2.00000(5),

c0 = �0.0197(5), and c1 = 0.0009973(3). Therefore, D,Kg � 20 seems su�ciently large to

investigate the phase transition at ✓ = ⇡ for the pure U(1) gauge theory at � = 3.0.
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Determination of critical endpoint Mc at 𝛽, 𝜖, 𝜆 = 3.0, 1.0, 0.5
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Figure 5: Topological charge density in the thermodynamic limit for the U(1) gauge-Higgs

model as a function of ✓/⇡ at � = 3.0 and � = 0.5 with Kg = 20, Kh = 20, and D = 160.

The circle and diamond denote M = 2.99 and M = 3.00, respectively.

�n (n = 0, 1, · · · ) be an n-th eigenvalue of the transfer matrix A. Assuming that these

eigenvalues are in descending order, we can obtain the scaling dimension xn(L) at the

finite system size L via

xn(L) =
1

2⇡
ln

�0(L)

�n(L)
. (3.6)

When these quantities are computed at the criticality and on a su�ciently large volume,

they give us the scaling dimension of the conformal field theory (CFT). Figure 7 shows

x1(L) as a function of the Higgs mass M . The volume independence can be observed at

M ⇠ 2.99748 with x1 = 1/8, which is consistent with the 2d Ising universality class. From

now on, we assume the critical phenomenon is in the 2d Ising universality class. Following

Ref. [48], we consider a combined scaling dimension,

xcmb(L) = x1(L) +
1

16
x2(L), (3.7)

which removes the e↵ect of the leading irrelevant perturbation associated with the scaling

dimension 4. Since x2 = 1 in the 2d Ising universality class, xcmb = 3/16 is expected at

the criticality. Figure 8 shows xcmb(L) against the Higgs mass M which is in agreement

with this expectation. Note that xcmb(L) shown in Figure 8 also agrees with the previous

estimation by X: 2.99747  Mc  2.99748. Moreover, we apply a scheme to determine

the critical point following Ref. [48], which assumes the phase transition is in the 2d Ising
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Figure 6: The ground state degeneracy X computed on V = 240 as a function of M .

universality class. We first choose two mass parameters M (+) and M (�) such that M (�) 
Mc  M (+) and compute �xcmb(L) = xcmb(L)�3/16. WhenM  Mc (M � Mc), �xcmb(L)

should increase (decrease) by enlarging the system size as shown in Fig. 8. Secondly, we

perform linear interpolations of �xcmb(L) between M (+) and M (�), and find a crossing

point M⇤(L) of two lines with the system size L and
p
2L. Then, Mc is obtained via

M⇤(L) = Mc + aL, where Mc and a are the parameters determined by the numerical fit.

The fit results in Mc = 2.997480(2), where we set M (�) = 2.99747, M (+) = 2.99749 using

the data with L 2 [210, 214
p
2]. Therefore, the tensor-network-based level spectroscopy

confirms the critical point estimated by the ground state degeneracy. We also investigate

the finite-size correction for the free energy in the thermodynamic limit via

1

L2
ln�0 = �f1 +

⇡c

6L2
, (3.8)

where f1 is the thermodynamic free energy and c is the central charge of the CFT at

criticality. Using Eq. (3.8) as a fitting ansatz for ln�0/L2, we can determine the central

charge. As a representative point, we choose M = 2.99748 and the fit using the data with

L 2 [210, 215] results in c = 0.50(7), which is consistent with c = 1/2, as expected.

We finally remark on the location of Mc which slightly depends on the algorithmic

parameters, Kg, Kh, and D = Kg�. Table 1 shows the critical endpoint Mc estimated by

the scheme in Ref. [48]. In Table 1, the error originates from the fit based on M⇤(L) =

Mc + aL. We find that these estimations are comparable with Mc = 2.989(2) obtained

in Ref. [39], where the gauge-field Boltzmann weight is given by the Villain form and
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Figure 1: Schematic phase diagram of (1+1)d U(1) gauge-Higgs model with a ✓ term.

The horizontal axis denotes the Higgs mass-squared. The red line denotes the first-order

phase transition, which terminates at the critical endpoint expressed by the red blob.

We always consider the model on a square lattice with periodic boundary conditions. We

employ the Lüscher gauge action,

Sg =

8
><

>:

X

n

1� ReP12(n)

1� [1� ReP12(n)]/✏
if “admissible”

1 otherwise

, (2.2)

where P12(n) is defined by Eq. (1.2) with U⌫(n) = ei#⌫(n) and #⌫(n) 2 [�⇡,⇡]. The

admissibility condition is given by

1� ReP12(n) < ✏. (2.3)

When this condition is satisfied, the corresponding gauge fields are called admissible. The

admissibility condition makes gauge fields smooth and unphysical configurations are sup-

pressed. The space of admissible gauge fields is separated into disconnected subspaces which

are labeled by the integers corresponding to topological charges in the continuum [1]. The

Higgs part is defined by

Sh = �
X

n

X

⌫

[�⇤(n)U⌫(n)�(n+ ⌫̂) + �⇤(n+ ⌫̂)U⇤
⌫ (n)�(n)]

+M
X

n

|�(n)|2 + �
X

n

|�(n)|4 . (2.4)

The complex-valued Higgs fields are denoted by �(n) and M = m2 + 4 is the lattice Higgs

mass where m corresponds to the Higgs mass parameter in the continuum action. The

quartic coupling constant is denoted by �. Finally, the ✓ term is defined by

S✓ = � i✓

2⇡

X

n

lnP12(n). (2.5)
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Figure 8: The system-size dependence of the scaling dimension xcmb(L). The dashed line

denotes the theoretical value of the 2d Ising universality class, xcmb = 3/16.

have observed the first-order phase transition at ✓ = ⇡ with su�ciently large lattice Higgs

mass M , including the pure gauge theory, with the finite gauge coupling � and the quartic

coupling �. We have determined the critical endpoint and its universality class from the

numerical analysis of the transfer matrix, which can be directly obtained from the TRG

computation. Employing the tensor-network-based level spectroscopy, we have confirmed

that the scaling dimensions are consistent with the 2d Ising universality class.

All these results show that the TRG is a promising approach to deal with the lattice

gauge theory with Lüscher’s admissibility condition. We emphasize that one can easily

combine the Lüscher gauge action with fermions and extend the theory for the higher

dimensions within the tensor network formulation. It would be an interesting future work

to investigate the Schwinger model with a ✓ term under Lüscher’s admissibility condition.
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(1+1)d U(1) gauge-Higgs model w/ 𝜃-term 

・ Gauge action is constructed w/ Lüscher’s admissibility condition

・ Suffers from the complex action problem and the topological freezing problem

・ TRG is free from both problems

・ Critical endpoint at 𝜃 = 𝜋 is successfully determined

・ Confirm the scaling dimension is consistent w/ the 2d Ising universality class
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FIG. 1. (a) Tensor decompositions in BTRG. A rank-4 site tensor
(T ) is decomposed into two rank-3 tensors (A and B or C and D)
and one rank-2 tensor (E or F ) depending on the position in the
tensor network. Decompositions (a1) and (a2) correspond to Eqs. (1)
and (2), respectively. (b) Renormalization step of BTRG. (b1) Tensor
decomposition: Each rank-4 tensor is decomposed into two rank-3
tensors and one rank-2 tensor, according to (a1) or (a2). (b2) Tensor
contraction: Four rank-3 tensors (A–D) and four rank-2 tensors (two
S1’s and two S2’s) are contracted into a new site tensor (T ′), and the
remaining tensors (E and F ) are regarded as new bond tensors (S′

1
and S′

2) [Eqs. (9)–(11)]. (b3) Rescale: by rotating the new network
by π/4 and rescaling by a factor of 1/

√
2, the original square-lattice

structure is retained. In these network diagrams, the bond dimension
of the legs (solid lines) is all χ ’s,

optimal hyperparameter, is stable under the renormalization
procedure. This observation indicates that BTRG captures the
correct scale-invariant property of renormalized tensors at the
critical point [16].

In BTRG, we consider renormalization of a tensor network
with tensors locating not only on the vertices (sites), but also
on the edges (bonds) (see Fig 1). BTRG’s renormalization
process is slightly different from conventional TRG. In the
original TRG, a rank-4 site tensor is decomposed into two
rank-3 tensors. On the other hand, in BTRG, a rank-4 site
tensor is decomposed into two rank-3 tensors and one rank-2
tensor as shown in Fig. 1(a).

Similar to the conventional TRG, first we apply the low-
rank approximation to the 4-rank site tensor by using SVD.
We introduce the following two different decompositions de-
pending on the position in the tensor network [Fig. 1(a)]:

Tx0,x1,y0,y1 ≈
χ∑

i

U1(x0,y0 ),iσ1iiV1i,(x1,y1 ), (1)

Tx0,x1,y0,y1 ≈
χ∑

i

U2(x0,y1 ),iσ2iiV2i,(x1,y0 ), (2)

where χ is the cutoff of the bond dimension. Then, we define
the tensors A–F as

A(x0,y0 ),i = U1(x0,y0 ),iσ1
(1−k)/2
ii , (3)

Ei, j = δi jσ1
k
ii, (4)

Bi,(x1,y1 ) = σ1
(1−k)/2
ii V1i,(x1,y1 ), (5)

C(x0,y1 ),i = U2(x0,y1 ),iσ2
(1−k)/2
ii , (6)

Fi, j = δi jσ2
k
ii, (7)

Di,(x1,y0 ) = σ2
(1−k)/2
ii V2i,(x1,y0 ). (8)

Here, k is a hyperparameter representing the difference from
the original TRG. The present algorithm is reduced to the
original TRG at k = 0. In the case of TRG (k = 0), E and F
[Eqs. (4) and (7)] are identity matrices, whereas for nonzero k,
they contain information about the singular values. After the
decompositions of the rank-4 tensors, we create new renor-
malized site tensors by contracting four rank-3 tensors and
four rank-2 tensors, and regard E and F as new bond tensors
as

T ′
x0,x1,y0,y1

=
∑

i0,i1,i2,i3

[
Bx0,(i0,i2 )C(i0,i3 ),y0 Dy1,(i1,i2 )

× A(i1,i3 ),x1 S2i0,i0 S2i1,i1 S1i2,i2 S1i3,i3

]
, (9)

S′
1 = E , (10)

S′
2 = F. (11)

By rotating the new network by π/4 and rescaling by a factor
of 1/

√
2, the original square-lattice structure is retained. We

present the whole renormalization step of BTRG in Fig. 1(b).
It is straightforward to confirm that the order of the costs of
this algorithm is the same as the original TRG: It requires
O(χ5) computation cost and O(χ3) memory footprints.

As an initial condition, we set the bond tensors S1 and
S2 as identity matrices at the beginning of BTRG. During
the renormalization steps, they become nontrivial through the
singular values of σ k of the site tensors. The extra weights
of the singular values σ−k/2 are included in A–D tensors in
addition to the weight σ 1/2 in the original TRG. We may con-
sider these weights as a mean-field environment similar to the
mean-field SRG proposed in Ref. [14]. In the mean-field SRG,
one estimates the mean field by iterative calculations, whereas
in BTRG, we use the singular values obtained in the previous
step. Thus, no additional effort is required for estimating the
environment. Nevertheless, BTRG with a proper choice of k
dramatically improves the accuracy as shown below.

To demonstrate the advantage of BTRG, we calculate the
two-dimensional Ising model on the square lattice by three
different methods, TRG, HOTRG, and BTRG, and compare
their results. The initial site tensor is prepared in the same way
as described in Ref. [15]. The renormalization is performed
16 times for each axis for HOTRG and 32 times for TRG and
BTRG. Thus, we calculate the partition function of the Ising
model on 216 × 216 square lattice with the periodic boundary
condition. First, we examine the k dependence of the relative

L060402-2

ADACHI, OKUBO, AND TODO PHYSICAL REVIEW B 105, L060402 (2022)

(a) (b)

(b1)

(b3)

(b2)

FIG. 1. (a) Tensor decompositions in BTRG. A rank-4 site tensor
(T ) is decomposed into two rank-3 tensors (A and B or C and D)
and one rank-2 tensor (E or F ) depending on the position in the
tensor network. Decompositions (a1) and (a2) correspond to Eqs. (1)
and (2), respectively. (b) Renormalization step of BTRG. (b1) Tensor
decomposition: Each rank-4 tensor is decomposed into two rank-3
tensors and one rank-2 tensor, according to (a1) or (a2). (b2) Tensor
contraction: Four rank-3 tensors (A–D) and four rank-2 tensors (two
S1’s and two S2’s) are contracted into a new site tensor (T ′), and the
remaining tensors (E and F ) are regarded as new bond tensors (S′

1
and S′

2) [Eqs. (9)–(11)]. (b3) Rescale: by rotating the new network
by π/4 and rescaling by a factor of 1/

√
2, the original square-lattice

structure is retained. In these network diagrams, the bond dimension
of the legs (solid lines) is all χ ’s,

optimal hyperparameter, is stable under the renormalization
procedure. This observation indicates that BTRG captures the
correct scale-invariant property of renormalized tensors at the
critical point [16].

In BTRG, we consider renormalization of a tensor network
with tensors locating not only on the vertices (sites), but also
on the edges (bonds) (see Fig 1). BTRG’s renormalization
process is slightly different from conventional TRG. In the
original TRG, a rank-4 site tensor is decomposed into two
rank-3 tensors. On the other hand, in BTRG, a rank-4 site
tensor is decomposed into two rank-3 tensors and one rank-2
tensor as shown in Fig. 1(a).

Similar to the conventional TRG, first we apply the low-
rank approximation to the 4-rank site tensor by using SVD.
We introduce the following two different decompositions de-
pending on the position in the tensor network [Fig. 1(a)]:

Tx0,x1,y0,y1 ≈
χ∑

i

U1(x0,y0 ),iσ1iiV1i,(x1,y1 ), (1)

Tx0,x1,y0,y1 ≈
χ∑

i

U2(x0,y1 ),iσ2iiV2i,(x1,y0 ), (2)

where χ is the cutoff of the bond dimension. Then, we define
the tensors A–F as

A(x0,y0 ),i = U1(x0,y0 ),iσ1
(1−k)/2
ii , (3)

Ei, j = δi jσ1
k
ii, (4)

Bi,(x1,y1 ) = σ1
(1−k)/2
ii V1i,(x1,y1 ), (5)

C(x0,y1 ),i = U2(x0,y1 ),iσ2
(1−k)/2
ii , (6)

Fi, j = δi jσ2
k
ii, (7)

Di,(x1,y0 ) = σ2
(1−k)/2
ii V2i,(x1,y0 ). (8)

Here, k is a hyperparameter representing the difference from
the original TRG. The present algorithm is reduced to the
original TRG at k = 0. In the case of TRG (k = 0), E and F
[Eqs. (4) and (7)] are identity matrices, whereas for nonzero k,
they contain information about the singular values. After the
decompositions of the rank-4 tensors, we create new renor-
malized site tensors by contracting four rank-3 tensors and
four rank-2 tensors, and regard E and F as new bond tensors
as

T ′
x0,x1,y0,y1

=
∑

i0,i1,i2,i3

[
Bx0,(i0,i2 )C(i0,i3 ),y0 Dy1,(i1,i2 )

× A(i1,i3 ),x1 S2i0,i0 S2i1,i1 S1i2,i2 S1i3,i3

]
, (9)

S′
1 = E , (10)

S′
2 = F. (11)

By rotating the new network by π/4 and rescaling by a factor
of 1/

√
2, the original square-lattice structure is retained. We

present the whole renormalization step of BTRG in Fig. 1(b).
It is straightforward to confirm that the order of the costs of
this algorithm is the same as the original TRG: It requires
O(χ5) computation cost and O(χ3) memory footprints.

As an initial condition, we set the bond tensors S1 and
S2 as identity matrices at the beginning of BTRG. During
the renormalization steps, they become nontrivial through the
singular values of σ k of the site tensors. The extra weights
of the singular values σ−k/2 are included in A–D tensors in
addition to the weight σ 1/2 in the original TRG. We may con-
sider these weights as a mean-field environment similar to the
mean-field SRG proposed in Ref. [14]. In the mean-field SRG,
one estimates the mean field by iterative calculations, whereas
in BTRG, we use the singular values obtained in the previous
step. Thus, no additional effort is required for estimating the
environment. Nevertheless, BTRG with a proper choice of k
dramatically improves the accuracy as shown below.

To demonstrate the advantage of BTRG, we calculate the
two-dimensional Ising model on the square lattice by three
different methods, TRG, HOTRG, and BTRG, and compare
their results. The initial site tensor is prepared in the same way
as described in Ref. [15]. The renormalization is performed
16 times for each axis for HOTRG and 32 times for TRG and
BTRG. Thus, we calculate the partition function of the Ising
model on 216 × 216 square lattice with the periodic boundary
condition. First, we examine the k dependence of the relative
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FIG. 2. k dependence of the relative error of the free energy
δ f = ∥ fcalc − fexact∥/∥ fexact∥ by BTRG at the critical point β = βc

with χ = 16 (blue squares), 24 (green triangles), and 32 (red circles).
The results of HOTRG are also shown by the horizontal lines for
comparison.

error of the free energy calculated by BTRG at the critical
point βc = 1

2 ln(1 +
√

2). As shown in Fig. 2, by setting k
negative, we can reduce the relative error from TRG. We
do not show the results for k > 0 in Fig. 2 as the relative
error becomes larger monotonically as k increases. One can
see that BTRG gives the best result at k ≈ −0.5. Moreover,
around the optimal point, the result of BTRG becomes more
accurate than HOTRG with the same bond dimension χ . In the
following calculation, we set k as the optimal value k = − 1

2 .
Next, we consider the χ dependence of the relative error of

the free energy at the critical point (Fig. 3). The relative error
of the free energy calculated by BTRG is smaller than those
by TRG and HOTRG for all bond dimensions. We also see
power-law decays δ f ∝ χ−α; the exponent α in BTRG looks
larger than those in TRG and HOTRG. We obtain α ≃ 4.4 for
BTRG, and it is close to the exponent of the finite χ scaling
of a matrix product state for the one-dimensional transverse
field Ising model [9,28–30]. We also show the β dependence
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FIG. 3. χ dependence of the relative error of the free energy
δ f = ∥ fcalc − fexact∥/∥ fexact∥ by TRG (blue squares), HOTRG (green
triangles), and BTRG (red circles) at the critical point β = βc.
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FIG. 4. β dependence of the relative error of the free energy
δ f = ∥ fcalc − fexact∥/∥ fexact∥ by TRG (blue squares), HOTRG (green
triangles), and BTRG (red circles) for χ = 24.

of the relative error of the free energy in Fig. 4. The bond
dimension is χ = 24. Again, the relative error of BTRG is
smaller than those by TRG and HOTRG at all temperatures.
To further clarify the accuracy of BTRG, we show the χ
dependence of the relative error of the energy at the critical
point in Fig. 5. Here, the energy is calculated by using the
automatic differentiation technique [32]. Similar to the case
of free energy, the error of the BTRG is smaller than those
of TRG and HOTRG, although we see the energy calculation
suffers from relatively more fluctuations.

We, thus, conclude that BTRG outperforms TRG and
HOTRG for the square-lattice tensor networks from the above
benchmark results. It should be emphasized that the computa-
tion cost of BTRG is O(χ5), which is the same as TRG and
much smaller than that of HOTRG O(χ7). Even though the
improvement of BTRG over HOTRG is not that impressive
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FIG. 5. χ dependence of the relative error of the energy δe =
∥ecalc − eexact∥/∥eexact∥ by TRG (blue squares), HOTRG (green
triangles), and BTRG (red circles) at the critical point β = βc. Nu-
merically exact energy for L = 216 is e = −1.414 223 060 05 [31].
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dimension is χ = 24. Again, the relative error of BTRG is
smaller than those by TRG and HOTRG at all temperatures.
To further clarify the accuracy of BTRG, we show the χ
dependence of the relative error of the energy at the critical
point in Fig. 5. Here, the energy is calculated by using the
automatic differentiation technique [32]. Similar to the case
of free energy, the error of the BTRG is smaller than those
of TRG and HOTRG, although we see the energy calculation
suffers from relatively more fluctuations.

We, thus, conclude that BTRG outperforms TRG and
HOTRG for the square-lattice tensor networks from the above
benchmark results. It should be emphasized that the computa-
tion cost of BTRG is O(χ5), which is the same as TRG and
much smaller than that of HOTRG O(χ7). Even though the
improvement of BTRG over HOTRG is not that impressive
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