

Yasumichi Aoki

Field Theory Research Team RIKEN Center for Computational Science

Acknowledgements

Codes used:

• Grid (HMC)

BQCD (Measurements)

Bridge++ (Measurements)

Hadrons (Measurements)

Grants:

- KAKANHI (FY2020-2024) QCD phase diagram explored by chiral fermions 20H01907
- MEXT Program for Promoting Researches on the Supercomputer **Fugaku** (PPR-Fugaku)
 - (FY2020-2022) Simulation for basic science: from fundamental laws of particles to creation of nuclei JPMXP1020200105
 - (FY2023-2025) Simulation for basic science: approaching the new quantum era JPMXP1020230411

Computers:

- RIKEN Hokusai BW
- Ito at Kyushu University (hp190124, hp200050)
- Polaire and Grand Chariot at Hokkaido University (hp200130)
- supercomputer Fugaku at R-CCS (ra000001; hp210032,hp220108,hp220233; hp200130, hp230207)

Projects

Nf=2:

- DWF → Overlap; high T:
 - chiral symmetry, fate of U(1)A, topology
- DWF
 - spectrum (see Lattice 2024 talk by David Ward)

common set-up for:

- JLQCD type domain wall fermion (DWF)
 - Gauge: tree-level Symanzik
 - Fermions: Möbius DWF (scale factor=2 Shamir) with stout smeared links
- good knowledge of T=0 fine lattices for flavor physics
 - calibration for finite temperature needs only small effort (computational)

Nf=2+1:

- DWF → Overlap for high T (led by Hidenori Fukaya)
- DWF: LCP analysis near and on the physical point
 - transition / crossover; topology
 - charge fluctuation (see talk by Jishnu Goswami)

Nf=3:

DWF: phase hunting near three-flavor degenerate chiral limit (see talk by Yu Zhang)

Members involved in the main topics of this talk

 $YA^{(1)}$,

H. Fukaya⁽²⁾, J. Goswami⁽¹⁾, S. Hashimoto⁽³⁾⁽⁴⁾, I. Kanamori⁽¹⁾, T. Kaneko⁽³⁾⁽⁴⁾⁽⁵⁾,

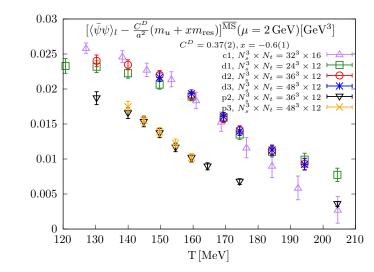
Y. Nakamura⁽¹⁾, Y. Zhang⁽⁶⁾,,,,

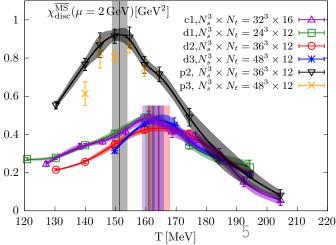
- (1): RIKEN Center for Computational Science
- (2): Osaka University
- (3): KEK
- (4): SOKENDAI
- (5): Kobayashi-Maskawa Institute, Nagoya Univ.
- (6): Bielefeld University

QCD phase transition near and on the physical point

- $N_f=2+1$, 2 fine lattice DWF simulation and reweighting to overlap [PRD(2021), PTEP(2022)]
 - Profound relation among: chiral symmetry, axial anomaly and topological susceptibility
- R & D for the $N_f=2+1$ thermodynamics with Line of Constant Physics (LCP)
 - Codes: Grid, Hadrons, Bridge++
 - LCP / Reweighting
 - Chiral order parameter and renormalization
 - Quark number susceptibility

- $N_f=2+1$ thermodynamics with LCP (mass = ms/10 = about 3 x physical ud quark mass)
 - 2 step renormalization for chiral condensate (power and log divergence) with an xm_{res} correction
 - 2 lattice spacings $N_t=12$, 16
 - 3 volumes $N_s/N_t=2$, 3, 4
 - No phase transition!
 - T_{pc} determined $T_{pc} = 165(2)$ MeV
 - PPR-Fugaku FY2020-2022
 - [PoS Lattice 2021, 2022]
- Physical point study
 - PPR-Fugaku 2023- preliminary results →

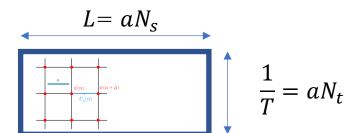


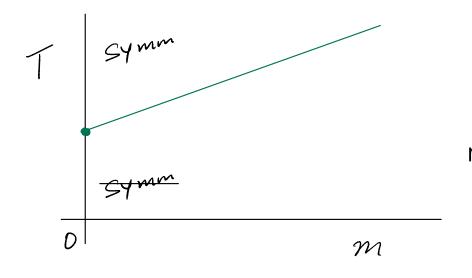


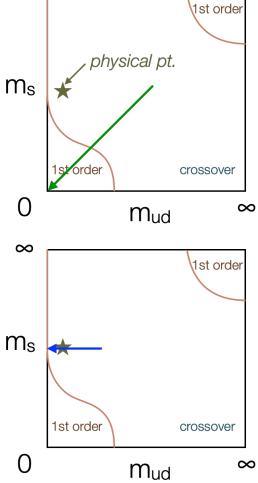
Modes of Simulations

to locate phase transition

- tune parameters near transition
- > T: fixed, change m
- > m: fixed, change T





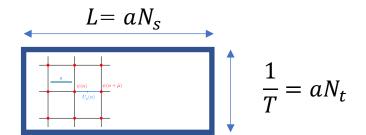


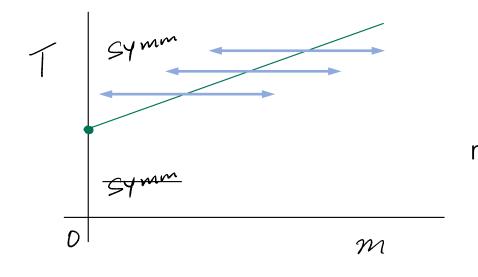
 ∞

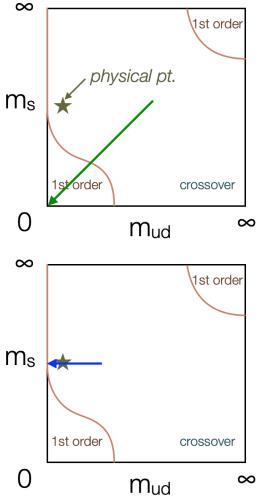
Modes of Simulations

to locate phase transition

- tune parameters near transition
- > T: fixed, change m
- > m: fixed, change T



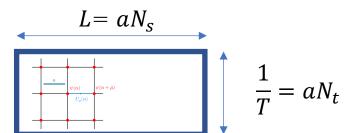




Modes of Simulations

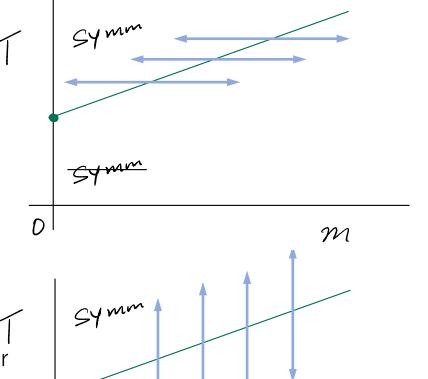
to locate phase transition

- tune parameters near transition
- > T: fixed, change m
- > m: fixed, change T



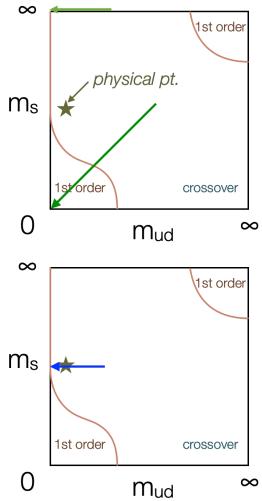
Fixing / changing the controlling parameter

- T: controled by
 - $a(\beta)$: controlled by β
 - N_t : discrete
- *m*: controlled by
 - input quark mass
 - $m(\beta) \leftarrow$ matching with hadronic scale: $M_H(\beta, m)$



M

Nf=2: Ward (Lattice 2024)



N_f =2+1 Möbius DWF LCP for 2023-

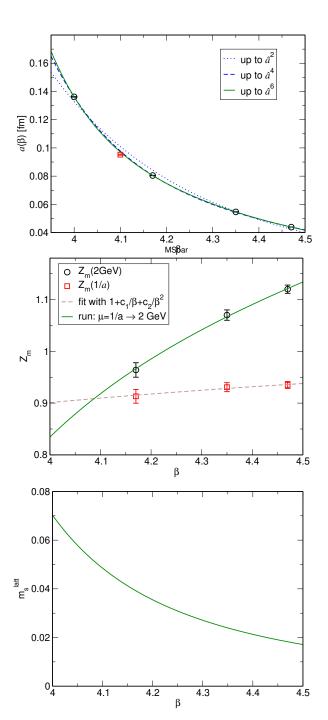
For the Line of Constant Physics: $am_s(\beta)$ with $a(\beta)$

- Step 1: determine $a(\beta)$ [fm] with t_0 (BMW) input
 - at $\beta = 4.0, 4.1^*, 4.17, 4.35, 4.47$
 - * β =4.0 new data, to add support at small β
 - * β =4.1 old pilot study data, removed small volume and statistics
- Step 2: determine $Z_m(\beta)$ using Non-Perturbative Renormalization results
 - at $\beta = 4.17, 4.35, 4.47$; Z_m with \overline{MS} 2 GeV are available
 - NNNLO running: $\mu = 2 \ GeV \rightarrow 1/a \ \& \beta$ polynomial fit & running back
 - use $Z_m(\beta)$ so obtained for $\beta \ge 4.0$: $\beta < 4.17$ region is extrapolation
 - $1/Z_m(\beta)$ will be used to renormalize scalar operator, **chiral condensate**
- Step 3: solve $am_s(\beta)$ with input (quark mass input):
 - $m_s^R = Z_m \cdot a m_s^{latt} \cdot a^{-1} = 92 \text{ MeV}$
 - $\frac{m_s}{m_{ud}} = 27.4$ (See for example FLAG 2019)
- See for details in Lattice 2021 proc by S.Aoki et al.

Do simulation

Step 4: proper tuning of input mass: correct m_{res}

Do simulation 2nd round / correction with reweighting + valence meas.



Simulation plan: $2^{\rm nd}$ round w/ treatment of m_{res} effect

 $L_s = 12$ fixed throughout this study

•
$$N_t = 12$$

•
$$m_l = 0.1 m_s$$

•
$$m_q^{input} = m_q^{LCP} - m_{res}$$

•
$$V_s = 24^3, 36^3$$

•
$$N_t = 16$$

•
$$m_l = 0.1 m_s$$

• m_{res} shift by reweighting

•
$$V_s = 32^3$$

•
$$N_t = 12$$

•
$$m_l = m_{ud}$$

•
$$m_q^{input} = m_q^{LCP} - m_{res}$$

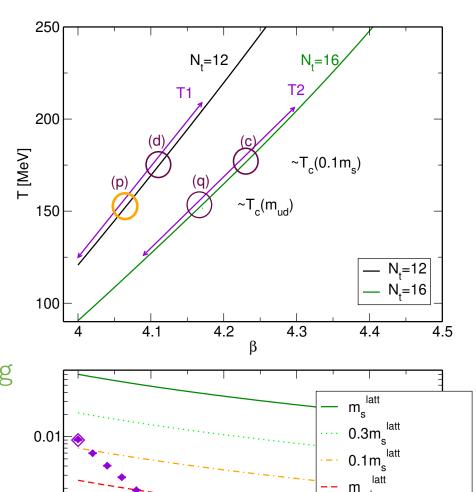
•
$$V_{\rm s} = 36^3, 48^3$$

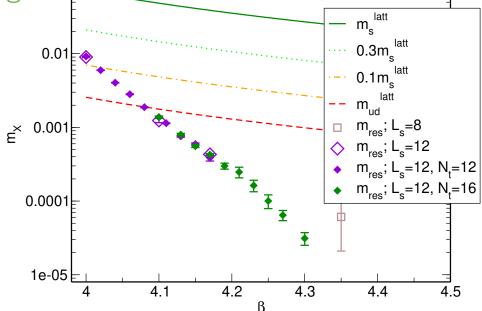
•
$$N_t = 16$$

•
$$m_l = m_{ud}$$

•
$$m_q^{input} = m_q^{LCP} - m_{res}$$

•
$$V_s = 48^3$$

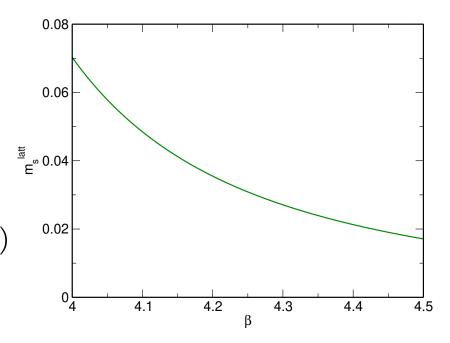




LCP remarks for FT2023-

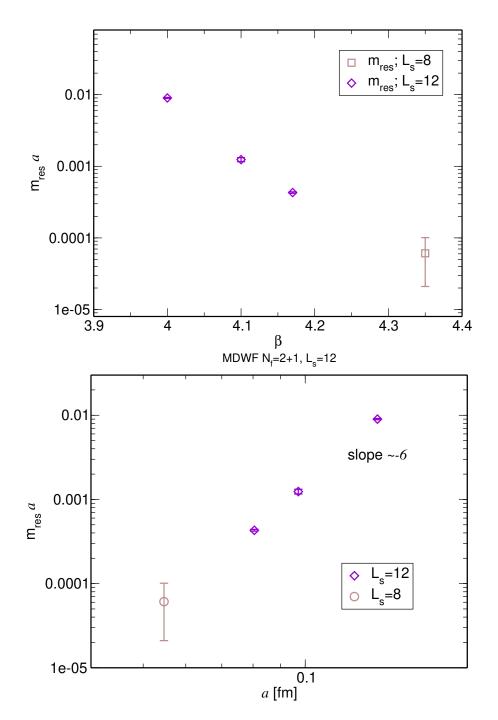
Features

- Fine lattice: use of existing results $(0.04 \le a \le 0.08 \text{ fm})$
 - Granted preciseness towards continuum limit
- Coarse lattice parametrization is an extrapolation
 - Preciseness might be deteriorated
 - Newly computing Z_m e.g. at $\beta=4.0$ (lower edge) might improve, but not done so far
 - NPR of Z_m at $a^{-1} \approx 1.4$ GeV may have sizable error (window problem) anyway
- Smooth connection from fine to coarse should not alter leading $O(a^2)$
 - Difference should be higher order
- Error estimated from Kaon mass (at physical point)
 - $\Delta m_K \sim 10 \%$ at $\beta = 4.0$ $(a \simeq 0.14 \text{ fm}) \rightarrow \Delta m_K \sim \text{a few } \%$
 - $\Delta m_K^2 \sim$ a few % at $\beta = 4.17$ ($a \simeq 0.08$ fm)



Domain wall fermions

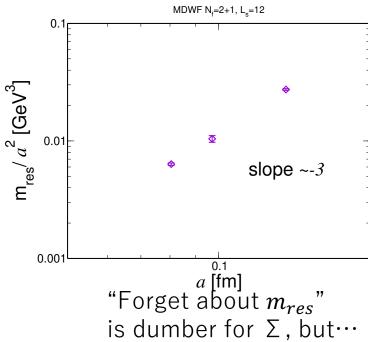
- Möbius DWF → OVF by reweighting
 - Successful (w/ error growth) at $\beta = 4.17$ ($a \simeq 0.08$ fm)
 - See Lattice 2021 JLQCD (presenter: K.Suzuki)
 - Questionable for
 - · Coarser lattice: rough gauge, DWF chiral symmetry breaking
 - Finer lattice: larger V (# sites)
- Chiral fermion with continuum limit
 - A practical choice is to stick on DWF
- Controlling chiral symmetry breaking with DWF
 - WTI residual mass m_{res} : $m_{\pi}^2 \propto (m_f + m_{res})(1 + h.o.)$
 - Understanding $m_{res}(\beta)$ with fixed L_s (5-th dim size)
- $m_{res}[MeV] \sim a^X$, where $X \sim 5$
 - Vanishes quickly as $a \rightarrow 0$
 - 1st (dumb) approximation: forget about m_{res}
 - Better: $m_f^{cont} \leftrightarrow \left(m_f + m_{res}\right)$ but, this is not always enough



Light quark $\Sigma = -\langle \overline{\psi} \psi \rangle$: conventional and residual power divergence

•
$$\Sigma|_{DWF} \sim C_D \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$$
 S. Sharpe (arXiv: 0706.0218)

- $m_{res} \neq x m_{res}$; $x = O(1) \neq 1$
 - "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a <u>very expensive proposition</u>." S. Sharpe.
- cf: $m_{\pi}^2 \propto \left(m_f + m_{res}\right)$ [1+h.o.]
- $\Sigma|_{DWF} \rightarrow C_D \frac{xm_{res}}{a^2} + \Sigma|_{cont.} + \cdots; (m_f \rightarrow 0)$
- $\Sigma|_{DWF} \rightarrow C_D \frac{-(1-x)m_{res}}{a^2} + \Sigma|_{cont.}; \quad (m_f \rightarrow -m_{res})$

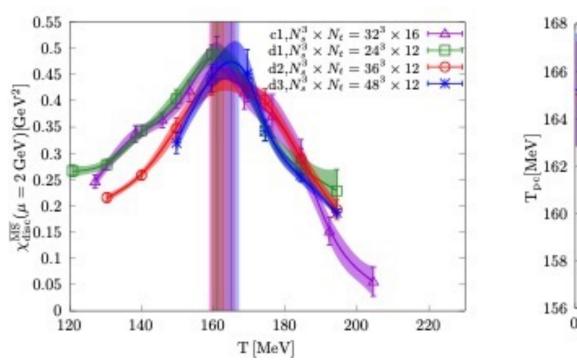


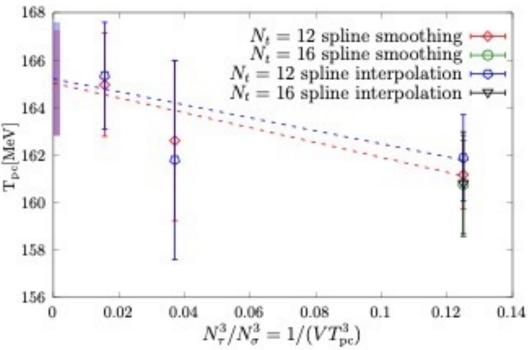
Light quark $\Sigma = -\langle \overline{\psi} \psi \rangle$: no power div. in disconnected susceptibility

- $\chi_{disc} = \langle \overline{u}u \cdot \overline{d}d \rangle \langle \overline{u}u \rangle \langle \overline{d}d \rangle$
 - power divergence in $\langle \overline{\psi}\psi \rangle$ cancels out
 - no new divergence over Σ because no new contact terms
 - needs multiplicative renormalization for logarithmic divergence
 - $Z_S(\beta) = 1/Z_m(\beta)$
 - we stick for now on this quantity
- $\chi_{total} = \langle \overline{\psi}\psi \cdot \overline{\psi}\psi \rangle \langle \overline{\psi}\psi \rangle \langle \overline{\psi}\psi \rangle$
 - has power divergence everywhere
 - needs to understand the power divergence of $\Sigma = -\langle \overline{\psi}\psi \rangle$ first

Chiral susceptibility (disconnected)

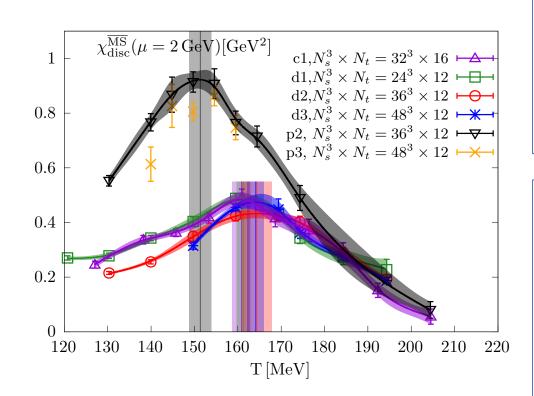
 $m_l = 0.1 m_{\scriptscriptstyle S}$ (about 3 time larger than physics u,d mass)





- no subtraction needed in addition to vacuum subtraction
- peak position: mild volume dependence → infinite volume limit
- observing no dependence for $N_t=12$ and 16 (LT=2)
- $T_{pc} = 165$ (2) MeV from the disconnected chiral condensate

Disconnected chiral susceptibility at average physical u and d quark mass



Likely NO phase transition at physical point with chiral fermions.

No surprise happened so far...

$$m_l = m_s / 10$$

• $d1,d2,d3: N_t = 12, LT=2,3,4$

• c1 : $N_t = 16$, LT=2

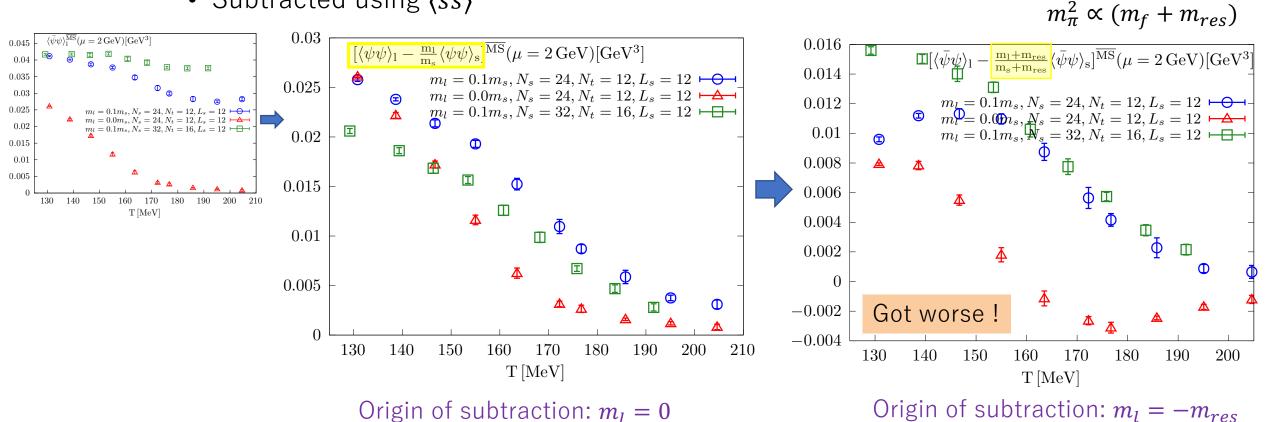
• good scaling $N_t = 12$ -16 observed for LT=2

$m_l = m_{ud}$

- p2,p3: $N_t=12$, aspect ratio LT = 3, 4
 - Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU
 - LT=4 very preliminary, currently running to get to planned satat.
- $T_{pc} = 151$ (3) MeV (preliminary) on $36^3 \times 12$, compared with
 - $T_{pc} = 155 (1)(8)$ w/ DWF ($N_t=8$) by HotQCD (2014)
 - $T_{pc} = 156.5 (1.5) \text{ w/ HISQ by HotQCD (2019) (} \simeq \text{disconnected)}$
 - $T_{pc} = 158.0 (0.6)$ w/ stout staggered by Budapest-Wuppertal (2020)

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$

- Two step UV renormalization necessary (naively)
 - Logarithmic divergence (multiplicative): $Z_S(\overline{MS}, 2 \text{ GeV})$
 - Power divergence (additive):
 - Subtracted using $\langle \overline{s}s \rangle$



 $\propto m_f a^{-2}$

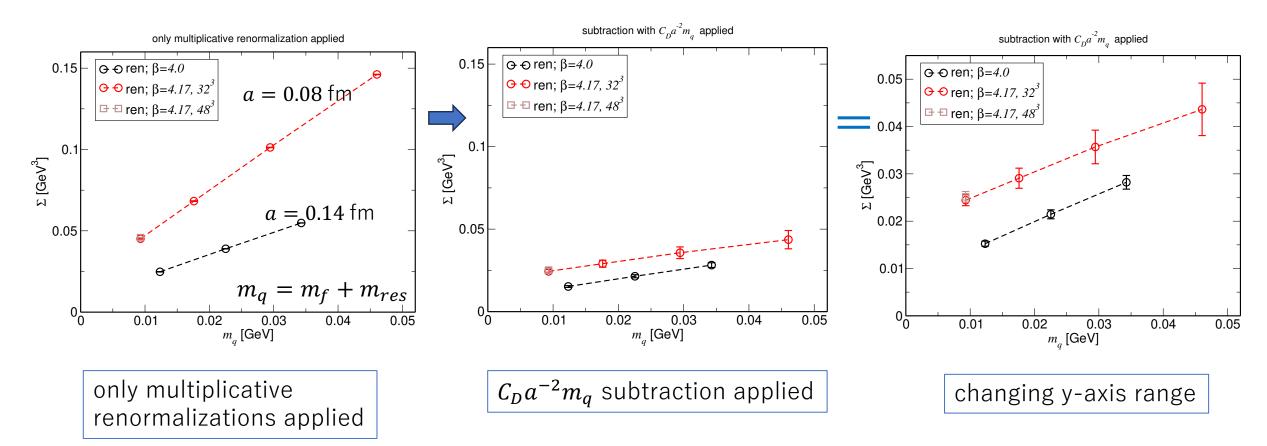
Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: residual power divergence

•
$$\Sigma|_{DWF} = C_D \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$$
 S. Sharpe (arXiv: 0706.0218)

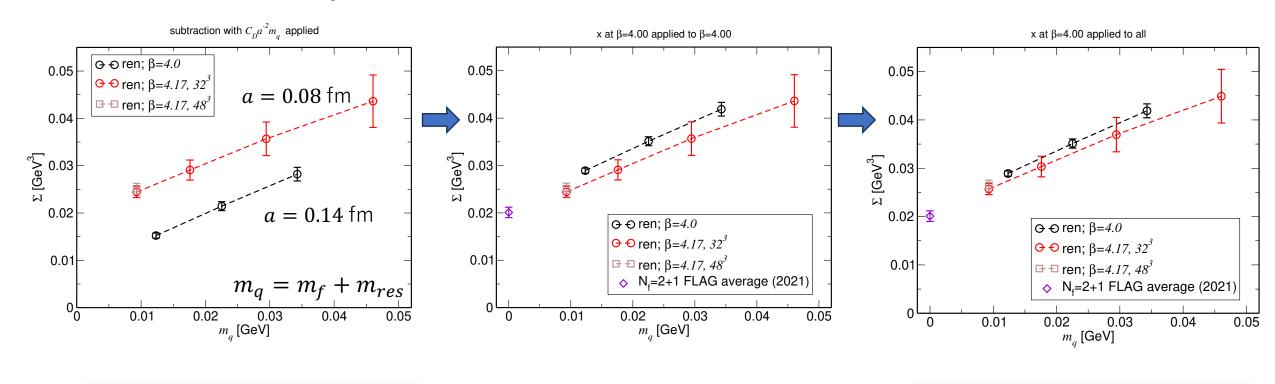
$$m_{res} \neq x m_{res}; \quad x = O(1) \neq 1$$

- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a <u>very expensive proposition</u>." S. Sharpe.
- (we proposed another way to utilize m'_{res} , which end up mixing T=0 C_R into high T)
- Yet another way of subtraction including xm_{res} using $N_f=3$, T=0 & $T>T_c$ information —see the talk by Yu Zhang
 - 1. Prepare several different lattice spacing for T = 0
 - 2. Compute coefficient linear in m_f : $\Sigma|_{DWF} \sim const. + (\frac{C_D}{a^2} + C_R)m_f + \cdots$
 - 3. Separate divergent term : linear fit in a^2 of. $C_D + a^2 C_R \rightarrow C_D = 0.37(2)$
 - 4. Estimate x using $T > T_c$ through $\Sigma|_{DWF} \to \frac{-C_D(1-x)m_{res}}{a^2} = 0$ $(m_f \to -m_{res})$ [ren.cond. $\Sigma|_{cont.} = 0$]
 - \rightarrow $N_f = 3; \beta = 4.0 \text{ estimate: } x = -0.6(1)$
 - In general, x may depend on β , for now use this value as a reference for all β
 - We also use C_D (single flavor normalization) of $N_f=3$ for $N_f=2+1$

test on $N_f=2+1$, T=0 measurements



test on $N_f=2+1$, T=0 measurements



Seemingly, both conventional and residual divergence are controlled, but

applied only to $\beta = 4.0$

 $C_D a^{-2} (1-x) m_{res}$ subtraction

 $C_D a^{-2} (1-x) m_{res}$ subtraction

assuming x is universal

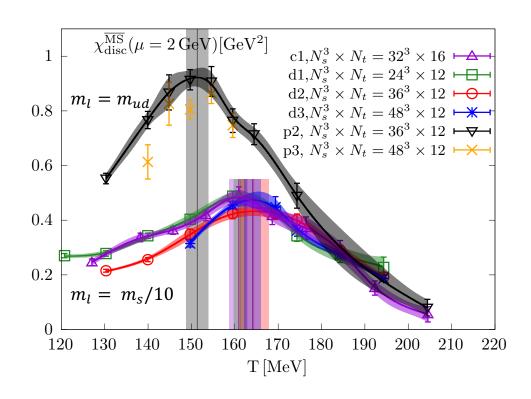
applied to all

• need to check if x does not depend much on β

 $C_D a^{-2} m_a$ subtraction applied

• refinement of precision and check applicability range of C_D necessary

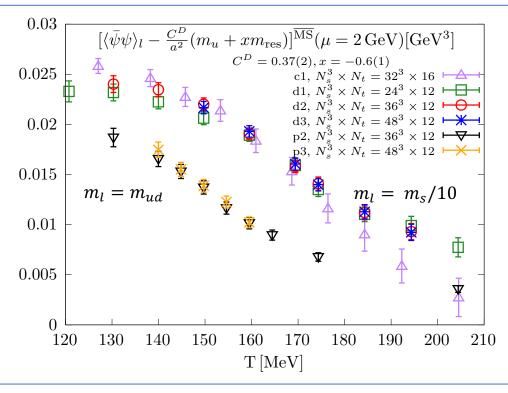
Disconnected chiral susceptibility and chiral condensate



Likely NO phase transition at physical point with chiral fermions.

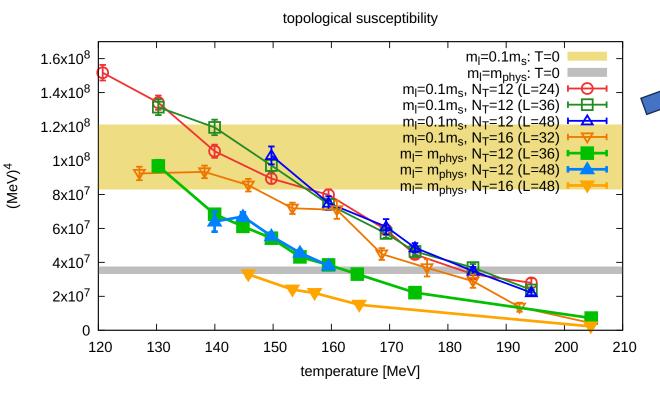
No surprise happened so far..

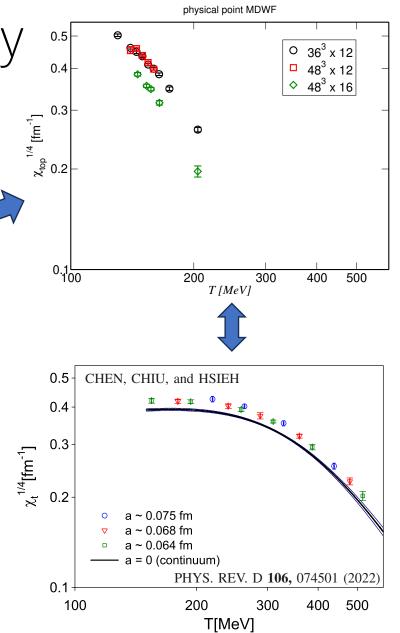
all divergences subtracted assuming x is universal



$$m_l = m_{ud}$$

- p2,p3: $N_t=12$, aspect ratio LT = 3, 4
 - Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU
 - LT=4 very preliminary, currently running to get to planned satat.
- $T_{nc} = 151 (3) \text{ MeV (preliminary) on } 36^3 \times 12$



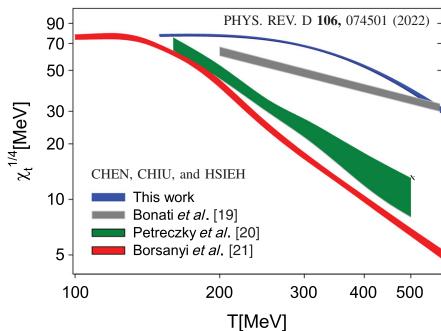


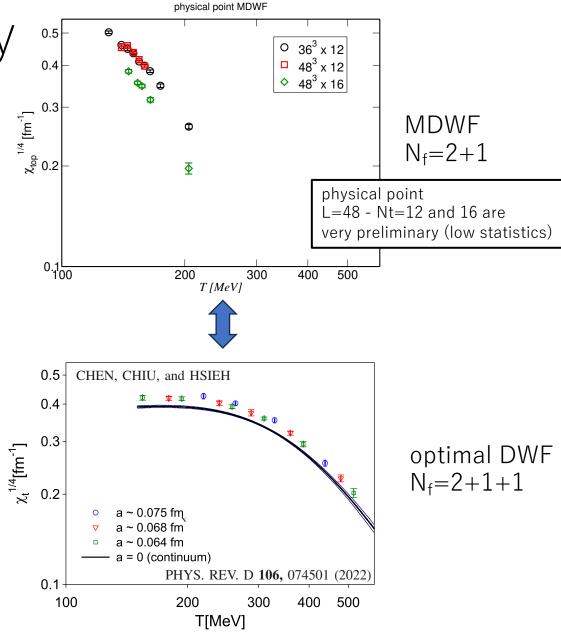
 $\begin{array}{c} MDWF \\ N_f = 2 + 1 \end{array}$

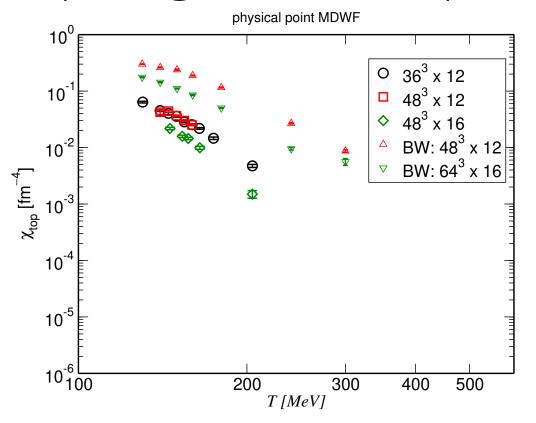
optimal DWF $N_f=2+1+1$

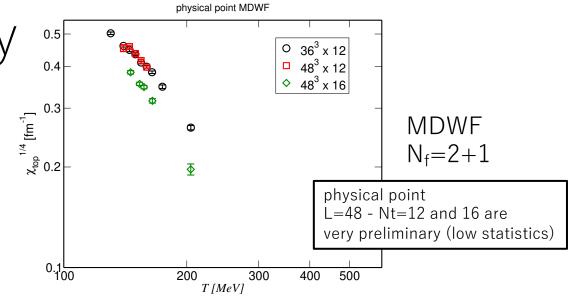
physical point L=48 - Nt=12 and 16 are very preliminary (low statistics)

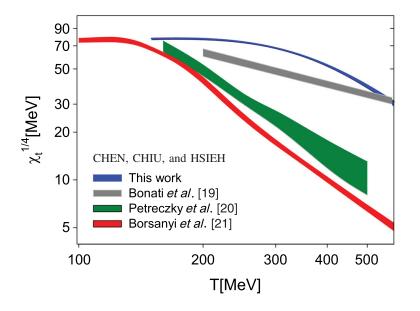
Summary by Chen et al (TWQCD)

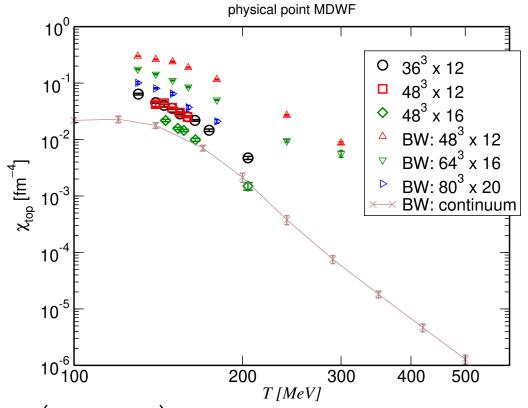


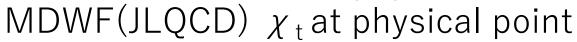




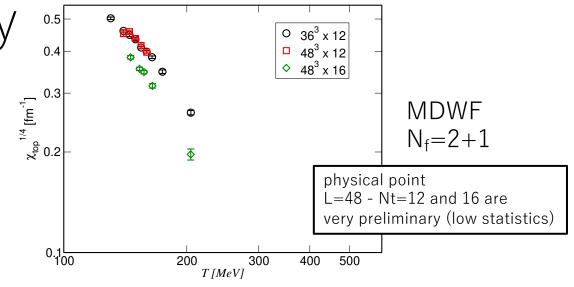




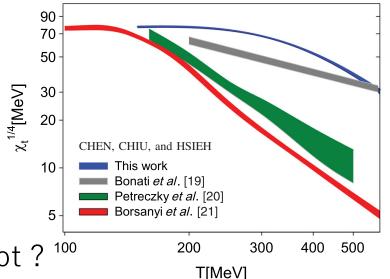




- inconsistent with Chen et al (optimal DWF)
- getting closer to BW[continuum] for $a \rightarrow 0$
- N_t =16 already ~continuum or even undershoot? 100
- more detailed study needed



physical point MDWF



Summary and Outlook

Nf=2+1 Physical point computation of QCD thermodynamics with Möbius DWF

- use LCP, determined with T=0 JLQCD knowledge
- no surprise on the existence/non-existence on the transition
- machinery to treat power divergence, residual chiral symmetry effect is being finalized
- seemingly the both types of "divergence" are under control using Nf=3 results
- further improvement underway
- Disconnected chiral susceptibility show no hint of phase transition for Nt=12
 - $T_{pc} \simeq T_{pc}$ (staggered)
 - no surprise so far with chiral fermions
- Topological susceptibility showing large lattice artifact for Nt=12. Nt=16 promising.

Outlook

- refinement of power divergence subtraction using T=0 information of very fine MDWF
- 48³ for Nt=12 and 16 are being run on Fugaku
- plan to be completed by the end of FY2025 with a few additional points on $64^3 \times 16$.
- use of these configuration underway
 - > see eg. talk by Goswami on charge fluctuation

thank you for your attention

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: residual power divergence

• $\Sigma|_{DWF} \sim \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$ S. Sharpe (arXiv: 0706.0218)

$$m_{res} \neq x m_{res}$$
; $x = O(1) \neq 1$

- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a <u>very expensive proposition</u>." S. Sharpe.
- We propose another way to estimate xm_{res} using m'_{res} If chiral symmetry is restored $\rightarrow \Sigma|_{cont.} = 0$ $\rightarrow m_f = -xm_{res} \text{ is a zero of } \Sigma|_{DWE} \text{ which is related with}$

$$m_{res} = \frac{\sum_{\vec{x}} \langle J_{5q}(\vec{x},t)P(0)\rangle}{\sum_{\vec{x}} \langle P(\vec{x})P(0)\rangle} \qquad (\Leftrightarrow m_{res} = \frac{\sum_{\vec{x}} \langle J_{5q}(\vec{x},t)P(0)\rangle}{\sum_{\vec{x}} \langle P(\vec{x},t)P(0)\rangle} \rightarrow \frac{\langle 0|J_{5q}|\pi\rangle}{\langle 0|P|\pi\rangle}$$

$$m_f = -m_{res}'$$
 is a zero of $\Sigma|_{DWF}$ $(\Leftrightarrow m_f = -m_{res})$ is a zero of m_π^2 Due to Axial WT identity: $(m_f + m_{res}') \sum_x \langle P(x) P(0) \rangle = \Sigma$
From: $\Delta_\mu \langle A_\mu(x) P(0) \rangle = 2m_f \langle P(x) P(0) \rangle + 2 \langle J_{5g}(x) P(0) \rangle - 2 \sum_x \delta_{x,0}$

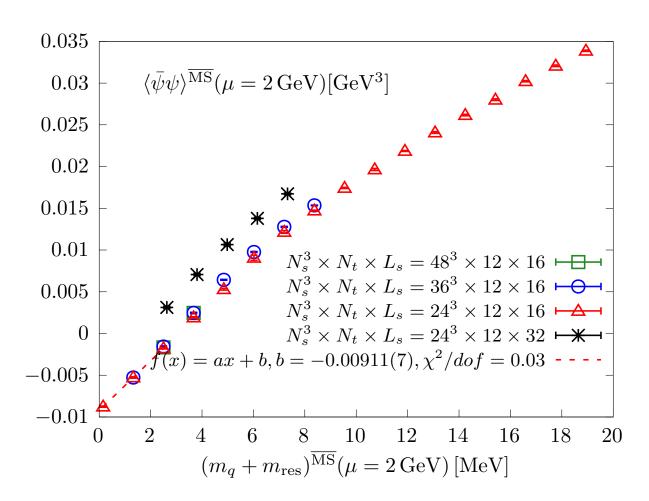
Light quark
$$\Sigma = -\langle \overline{\psi}\psi \rangle$$
: residual power divergence

•
$$\Sigma|_{DWF} = C_D \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$$
 S. Sharpe (arXiv: 0706.0218)

$$m_{res} \neq x m_{res}; \quad x = O(1) \neq 1$$

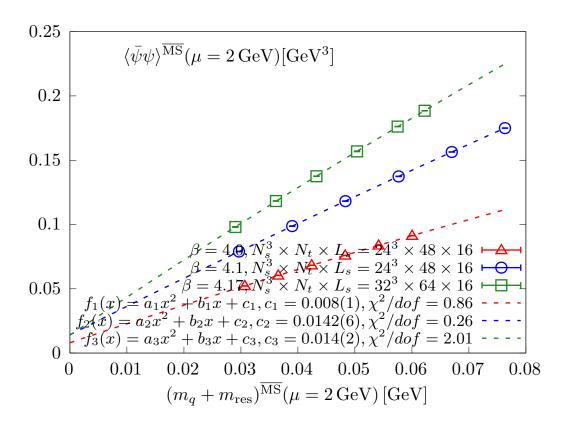
- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a <u>very expensive proposition</u>." S. Sharpe.
- $N_f = 3$ case
 - T>0 problem @ $\beta = 4.0$
 - T=0 exercise @ β =4.0, 4.1, 4.17
 - T>0 div free Σ

$N_f=3$, $N_t=12$ chiral condensate



- only multiplicative renormalization applied
- quark mass: m_{res} shift applied
- @T=0: $m_{\pi} \rightarrow 0$, $(m_q + m_{res}) \rightarrow 0$
- $L_s = 16$
 - three volumes: 24³, 36³, 48³
- $L_s = 32$
 - smaller m_{res} , 24^3
- Intercept = $C_D \frac{-(1-x)m_{res}}{a^2} < 0$
 - need to be subtracted

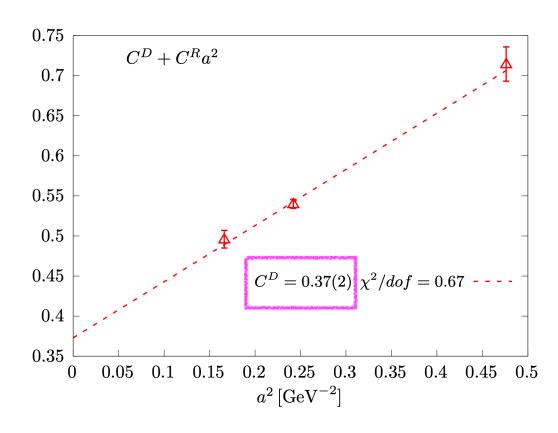
Nf=3, T=0 chiral condensate



•
$$\Sigma(m) = C_0 + C_1 m + C_2 m^2$$
 fit

•
$$C_1 = \frac{C_D}{a^2} + C_R$$

• C_D/a^2 : divergent, C_R : regular

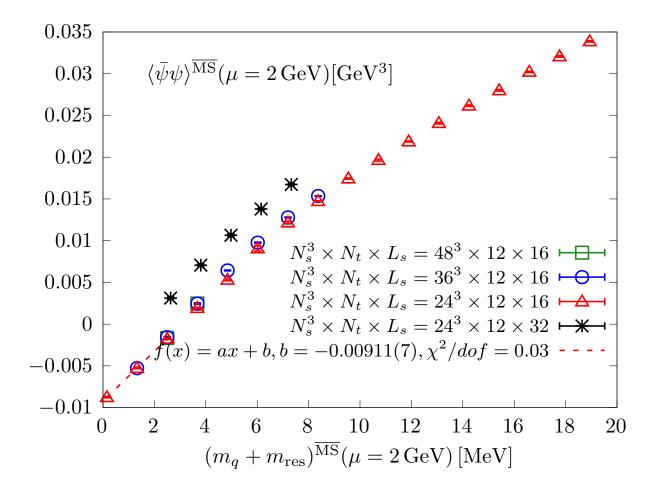


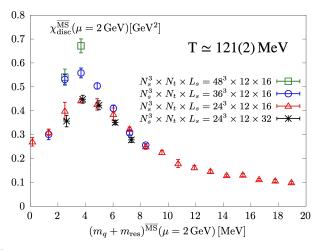
•
$$\Sigma|_{DWF} = C_D \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$$

•
$$C_D + C_R a^2$$

• $C_D = 0.37(2)$ from linear fit

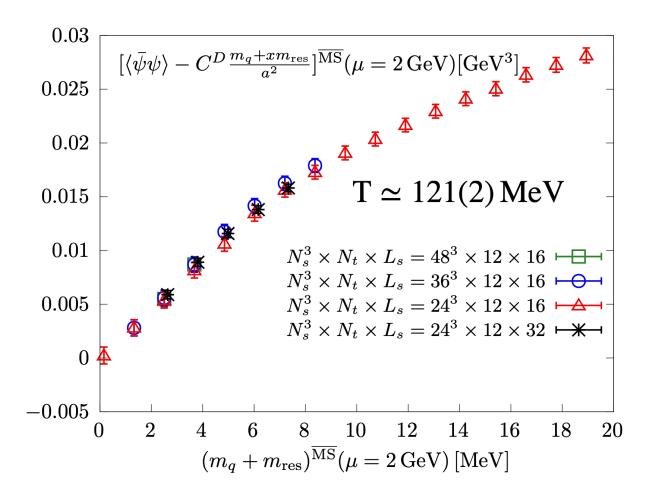
$N_f=3$, $N_t=12$ chiral condensate

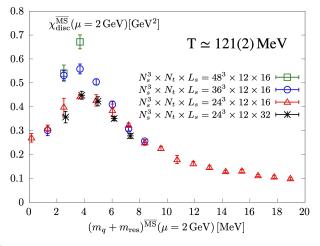




- $m_{pc} \simeq 4 \text{ MeV}$
- $m < m_{pc}$: high T "phase"
- $\Sigma|_{DWF} \rightarrow C_D \frac{-(1-x)m_{res}}{a^2} + \Sigma|_{cont.};$ $(m_f \rightarrow -m_{res})$
- $\Sigma|_{cont.}=0$: renormalization cond.
 - applied to determine x
 - x=-0.6(1) from $24^3 \times 12 \times 16$

$N_f=3$, $N_t=12$ chiral condensate

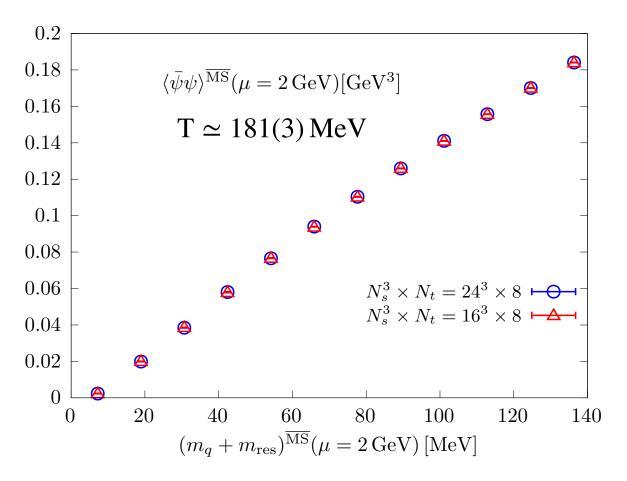




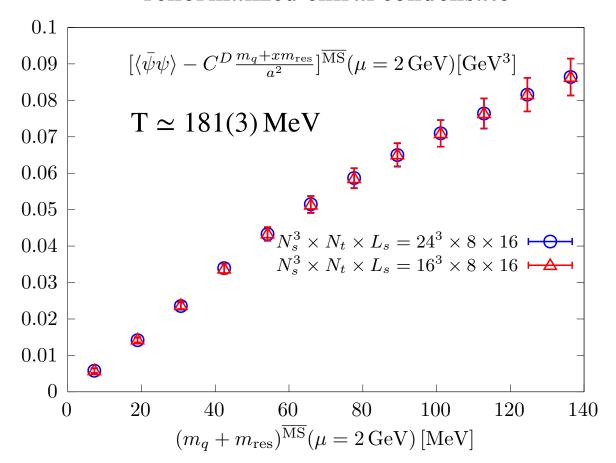
- $m_{pc} \simeq 4 \text{ MeV}$
- $m < m_{pc}$: high T "phase"
- $\Sigma|_{DWF} \rightarrow C_D \frac{-(1-x)m_{res}}{a^2} + \Sigma|_{cont.};$ $(m_f \rightarrow -m_{res})$
- $\Sigma|_{cont.}=0$: renormalization cond.
 - applied to determine x
 - x=-0.6(1) from $24^3x12x16$
- subtraction using these to all sets
 - note: consistency $L_s=16 <-> 32$

Renormalized chiral condensate

Multiplicatively renormalized chiral condensate



Additive and multiplicatively renormalized chiral condensate



Subtracted chiral condensate vanishes in the chiral limit as expected since T> T_c