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Nf=2:
l DWF → Overlap; high T: 

l chiral symmetry, fate of U(1)A, topology
l DWF

l spectrum (see Lattice 2024 talk by David Ward)

common set-up for :
l JLQCD type domain wall fermion (DWF)

l Gauge:      tree-level Symanzik
l Fermions: Möbius DWF (scale factor=2 Shamir) with stout smeared links

l good knowledge of T=0 fine lattices for flavor physics 
l calibration for finite temperature needs only small effort (computational)

Nf=2+1:
l DWF → Overlap for high T (led by Hidenori Fukaya)
l DWF: LCP analysis near and on the physical point

l transition / crossover; topology
l charge fluctuation (see talk by Jishnu Goswami)

Nf=3:
l DWF: phase hunting near three-flavor degenerate chiral limit (see talk by Yu Zhang)

Projects
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l Nf=2+1, 2 fine lattice DWF simulation and reweighting to overlap  [PRD(2021), PTEP(2022)]
- Profound relation among: chiral symmetry, axial anomaly and topological susceptibility

l R & D for the Nf=2+1 thermodynamics with Line of Constant Physics (LCP) 
- Codes: Grid, Hadrons, Bridge++
- LCP / Reweighting
- Chiral order parameter and renormalization
- Quark number susceptibility

l Nf=2+1    - thermodynamics with LCP (mass = ms/10 = about 3 x physical ud quark mass)
- 2 step renormalization for chiral condensate (power and log divergence) with an 𝑥𝑚!"# correction
- 2 lattice spacings Nt=12, 16
- 3 volumes Ns/Nt=2, 3, 4
- No phase transition !
- Tpc determined 𝑇$% = 165(2) MeV
- PPR-Fugaku FY2020-2022
- [PoS Lattice 2021, 2022] 

l Physical point study
- PPR-Fugaku 2023- preliminary results →

QCD phase transition near and on the physical point
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Modes of Simulations
to locate phase transition
• tune parameters near transition
Ø T: fixed, change m
Ø m: fixed, change T 

T Symm

⑨

Symm

0 m

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.

�(x), Aµ(x), x ⌅ R4: continuous infinity
quantum divergences: needs regularization and renormalization

⇥(n + µ̂)⇥(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ⇤ 0.1 fm
(UV cut-off |p| ⇥ ⇥/a)

• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]

Taku Izubuchi, Wako, Mini Workshop on Lattice QCD at RIKEN, Decmber 22, 2009 7
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Modes of Simulations
to locate phase transition
• tune parameters near transition
Ø T: fixed, change m
Ø m: fixed, change T 

Fixing / changing the controlling parameter
• 𝑇: controled by

• 𝑎(β) : controlled by β
• 𝑁! : discrete

• 𝑚: controlled by
• input quark mass
• 𝑚 β ← matching with hadronic scale: 𝑀#(β,𝑚)
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Nf=2: Ward (Lattice 2024)
Nf=3: Zhang



For the Line of Constant Physics: 𝒂𝒎𝒔(𝜷) with 𝒂(𝜷)
• Step 1: determine 𝒂(𝜷) [fm] with 𝑡! (BMW) input

• at 𝛽 = 𝟒. 𝟎, 4.1∗, 4.17, 4.35, 4.47
* 𝛽=4.0 new data, to add support at small β
* 𝛽=4.1 old pilot study data, removed - small volume and statistics

• Step 2: determine 𝑍#(𝛽) using Non-Perturbative Renormalization results     
• at 𝛽 = 4.17, 4.35, 4.47;    𝑍# with 𝑀𝑆 2 GeV are available
• NNNLO running: µ = 2 𝐺𝑒𝑉 → 1/𝑎 & β polynomial fit & running back 
• use 𝑍#(𝛽) so obtained for 𝛽 ≥ 4.0 : 𝛽 < 4.17 region is extrapolation 
• 1/𝑍# 𝛽 will be used to renormalize scalar operator, chiral condensate 

• Step 3: solve 𝒂𝒎𝒔(𝜷) with input (quark mass input): 
• 𝑚%

& = 𝑍# ⋅ 𝑎𝑚%
'())⋅ 𝑎*+ = 92 MeV

• #!
#"#

= 27.4 (See for example FLAG 2019)

• See for details in Lattice 2021 proc by S.Aoki et al.
Do simulation
• Step 4: proper tuning of input mass: correct mres

Do simulation 2nd round / correction with reweighting + valence meas. 4 4.1 4.2 4.3 4.4 4.5
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Simulation plan: 2nd round
w/ treatment of 𝑚!"# effect

• T2-(c)
• 𝑁C = 16
• 𝑚D = 0.1𝑚E
• 𝑚FGE shift by reweighting
• 𝑉E = 32H

• T2-(q)
• 𝑁C = 16
• 𝑚D = 𝑚IJ

• 𝑚K
LMNIC = 𝑚K

OPQ −𝑚FGE
• 𝑉E = 48H

• T1-(d)
• 𝑁C = 12
• 𝑚D = 0.1𝑚E

• 𝑚K
LMNIC = 𝑚K

OPQ −𝑚FGE
• 𝑉E = 24H, 36H

𝐿- = 12 fixed throughout this study
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Features
• Fine lattice: use of existing results (0.04 ≤ 𝑎 ≤ 0.08 fm)

• Granted preciseness towards continuum limit
• Coarse lattice parametrization is an extrapolation

• Preciseness might be deteriorated
• Newly computing 𝑍! e.g. at 𝛽 = 4.0	(lower edge) might improve, but not done so far

• NPR of 𝑍# at 𝑎*+ ≃1.4 GeV may have sizable error (window problem) anyway
• Smooth connection from fine to coarse should not alter leading 𝑂 𝑎S

• Difference should be higher order
• Error estimated from Kaon mass (at physical point)

• Δ𝑚" ~ 10 % at 𝛽 = 4.0	 (𝑎 ≃ 0.14 fm)  → Δ𝑚" ~ a few %
• Δ𝑚" ~ a few % at 𝛽 = 4.17	(𝑎 ≃ 0.08 fm)
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• Möbius DWF → OVF by reweighting
• Successful (w/ error growth) at 𝛽 = 4.17 (𝑎 ≃ 0.08 fm)

• See Lattice 2021 JLQCD (presenter: K.Suzuki)
• Questionable for

• Coarser lattice: rough gauge, DWF chiral symmetry breaking
• Finer lattice:     larger V (# sites)

• Chiral fermion with continuum limit
• A practical choice is to stick on DWF

• Controlling chiral symmetry breaking with DWF
• WTI residual mass 𝑚,-%: 𝑚.

/ ∝ 𝑚0 +𝑚,-% (1 + ℎ. 𝑜. )
• Understanding  𝑚,-% 𝛽 with fixed 𝐿% (5-th dim size)

• 𝑚+,-[𝑀𝑒𝑉] ∼ 𝑎.,  where 𝑋 ∼ 5
• Vanishes quickly as 𝑎 → 0
• 1st (dumb) approximation: forget about 𝑚,-%

• Better : 𝑚0123) ↔ 𝑚0 +𝑚,-% but, this is not always enough
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Light quark Σ = − 𝜓𝜓 :
conventional and residual power divergence

• Σ|./0~𝐶.
1# 231$%&

4'
+ Σ|5678. +⋯ S. Sharpe (arXiv: 0706.0218)

• 𝑚:;- ≠ 𝑥𝑚:;-;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It 

can be studied and reduced only by increasing 𝐿- - a very expensive proposition.” 
‒ S. Sharpe.

• cf:	𝑚<
= ∝ 𝑚> +𝑚:;- [1+h.o.]

• Σ|./0 → 𝐶.
31$%&
4' + Σ|5678. + ⋯ ;	(𝑚> → 0)

• Σ|./0 → 𝐶.
?(@?3)1$%&

4'
+ Σ|5678.;			(𝑚> → −𝑚:;-)

“Forget about 𝑚$%"”     
is dumber for Σ, but… 
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Light quark Σ = − 𝜓𝜓 :
no power div. in disconnected susceptibility

• χ-./0 = 𝑢𝑢・𝑑𝑑 − 𝑢𝑢 𝑑𝑑
• power divergence in 𝜓𝜓 cancels out
• no new divergence over Σ because no new contact terms
• needs multiplicative renormalization for logarithmic divergence
• 𝑍A(β) = 1/𝑍1(β)
• we stick for now on this quantity

• χ12134= 𝜓𝜓・𝜓𝜓 − 𝜓𝜓 𝜓𝜓
• has power divergence everywhere
• needs to understand the power divergence of Σ = − 𝜓𝜓 first



Chiral susceptibility (disconnected)

• no subtraction needed in addition to vacuum subtraction

• peak position : mild volume dependence → infinite volume limit

• observing no dependence for Nt=12 and 16 (LT=2)

• 𝑻𝒑𝒄 = 𝟏𝟔𝟓 𝟐 MeV from the disconnected chiral condensate

𝑚! = 0.1𝑚" (about 3 time larger than physics u,d mass)



Disconnected chiral susceptibility at average 
physical u and d quark mass

𝑚4 = 𝑚-/10
• d1,d2,d3 : 𝑁) = 12, LT=2,3,4

• c1           : 𝑁) = 16, LT=2

• good scaling 𝑁) = 12 -16 observed for LT=2

𝑚& = 𝑚'(

• p2,p3: Nt=12, aspect ratio LT = 3, 4
• Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU

• LT=4 very preliminary, currently running to get to planned satat.

• 𝑻𝒑𝒄 = 𝟏𝟓𝟏 𝟑 MeV (preliminary) on 𝟑𝟔𝟑×𝟏𝟐, compared with
• 𝑻𝒑𝒄 = 𝟏𝟓𝟓 𝟏 𝟖 w/ DWF (Nt=8) by HotQCD (2014)

• 𝑻𝒑𝒄 = 𝟏𝟓𝟔. 𝟓 𝟏. 𝟓 w/ HISQ by HotQCD (2019) (≃disconnected)

• 𝑻𝒑𝒄 = 𝟏𝟓𝟖. 𝟎 𝟎. 𝟔 w/ stout staggered by Budapest-Wuppertal (2020)
Likely NO phase transition at physical point
with chiral fermions.
No surprise happened so far..
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Light quark Σ = −⟨𝜓𝜓⟩
• Two step UV renormalization necessary (naively)
• Logarithmic divergence (multiplicative):  𝑍,(𝑀𝑆, 2 GeV)
• Power divergence (additive):                    ∝ 𝑚- 𝑎./

• Subtracted using ⟨𝑠𝑠⟩ 6
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Got worse !



Light quark Σ = − 𝜓𝜓 : residual power divergence
• Σ|89: = 𝐶8

;4 <=;567

>8
+ Σ|?@AB. +⋯ S. Sharpe (arXiv: 0706.0218)

𝑚,-% ≠ 𝑥𝑚,-%;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only 

by increasing 𝐿$ - a very expensive proposition.” ‒ S. Sharpe.

• (we proposed another way to utilize 𝑚′!"#, which end up mixing T=0 𝐶$ into high 𝑇)
• Yet another way of subtraction including 𝑥𝑚!"# using 𝑵𝒇 = 𝟑, 𝑻 = 𝟎 & 𝑻 > 𝑻𝒄 information

→see the talk by Yu Zhang
1. Prepare several different lattice spacing for 𝑻 = 𝟎
2. Compute coefficient linear in 𝑚0 : Σ|9:;~𝑐𝑜𝑛𝑠𝑡. +(

<%
(&
+ 𝐶&)𝑚0 +⋯

3. Separate divergent term :               linear fit in 𝑎/ of: 𝐶9 + 𝑎/𝐶& → 𝑪𝑫 = 𝟎. 𝟑𝟕(𝟐)
4. Estimate 𝑥 using 𝑻 > 𝑻𝒄 through Σ|9:; →

*<%(+*@)#'(!
(&

= 0 (𝑚0 → −𝑚,-%) [ren.cond. Σ|123). = 0]
→ 𝑵𝒇 = 𝟑; 𝜷 = 𝟒. 𝟎 estimate: 𝒙 = −𝟎. 𝟔 𝟏

• In general, 𝒙 may depend on 𝜷, for now use this value as a reference for all 𝜷
• We also use 𝐶9 (single flavor normalization) of 𝑁0 = 3 for 𝑁0 = 2 + 1



test on 𝑁! = 2 + 1, 𝑇 = 0 measurements
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test on 𝑁! = 2 + 1, 𝑇 = 0 measurements

0 0.01 0.02 0.03 0.04 0.05
m

q
 [GeV]

0

0.01

0.02

0.03

0.04

0.05

Σ
 [

G
e

V
3
]

ren; β=4.0

ren; β=4.17, 32
3

ren; β=4.17, 48
3

subtraction with C
D

a
-2

m
q

 applied

𝑚0 = 𝑚. +𝑚$%"

𝐶1𝑎2-𝑚0 subtraction applied 𝐶1𝑎2-(1 − 𝑥)𝑚$%" subtraction
applied only to β=4.0

𝐶1𝑎2-(1 − 𝑥)𝑚$%" subtraction
applied to all
assuming 𝑥 is universal

Seemingly, both conventional and residual divergence are controlled, but
• need to check if 𝑥 does not depend much on β
• refinement of precision and check applicability range of 𝐶1 necessary  

𝑎 = 0.14 fm

𝑎 = 0.08 fm

0 0.01 0.02 0.03 0.04 0.05
m

q
 [GeV]

0

0.01

0.02

0.03

0.04

0.05

Σ
 [

G
e

V
3
]

ren; β=4.0

ren; β=4.17, 32
3

ren; β=4.17, 48
3

N
f
=2+1 FLAG average (2021)

x at β=4.00 applied to β=4.00

0 0.01 0.02 0.03 0.04 0.05
m

q
 [GeV]

0

0.01

0.02

0.03

0.04

0.05

Σ
 [
G

e
V

3
]

ren; β=4.0

ren; β=4.17, 32
3

ren; β=4.17, 48
3

N
f
=2+1 FLAG average (2021)

x at β=4.00 applied to all



Disconnected chiral susceptibility and chiral 
condensate

𝑚! = 𝑚"#

• p2,p3: Nt=12, aspect ratio LT = 3, 4

• Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU

• LT=4 very preliminary, currently running to get to planned satat.

• 𝑻𝒑𝒄 = 𝟏𝟓𝟏 𝟑 MeV (preliminary) on 𝟑𝟔𝟑×𝟏𝟐

Likely NO phase transition at physical point
with chiral fermions.
No surprise happened so far..
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)

CHEN, CHIU, and HSIEH PHYS. REV. D 106, 074501 (2022)

074501-8

for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
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optimal DWF
Nf=2+1+1

MDWF
Nf=2+1

physical point 
L=48 - Nt=12 and 16 are 
very preliminary (low statistics)

tree-level improved Symanzik gauge action and the stout
improved staggered fermion action. The continuum limit of
χ1=4was obtained by extrapolationwith three lattice spacings
a ¼ ð0.0572; 0.0707; 0.0824Þ fm.The topological charge of
each configuration was measured by the clover charge after
cooling.
The results of Petreczky et al. [20] were obtained from

simulations of Nf ¼ 2þ 1 lattice QCD with mπ ¼
160 MeV and ms=mud ¼ 20 (physical ms), using the
tree-level improved gauge action and the highly improved
staggered quark action (HISQ). The continuum limit of χ1=4t
is obtained by extrapolation with three lattice spacings with
Nt ¼ ð8; 10; 12Þ. They used two methods to measure the
topological susceptibility: 1) the clover charge in the
Symanzik flow and 2) the chiral susceptibilities χπ and
χδ and the relation χt ¼ m2

udχdisc for T > Tc. Both methods
gave compatible results. In Fig. 6, only the data points
obtained with the clover charge are plotted.
The topological susceptibility of Borsanyi et al. [21] was

measured by the clover charge in the Wilson flow, and the
data points in Fig. 6 are based on the numerical results in
Table S9 of the Supplementary Information of Ref. [21],
which are supposed to be the continuum extrapolated
topological susceptibility of Nf ¼ 2þ 1þ 1 QCD at the
physical point, plus the theoretically estimated contribution
of the b quark and the correction for the mass difference
between u and d quarks. However, only seven data points in
the range of T ¼ 130–300 MeV were based on direct
simulations of Nf ¼ 2þ 1þ 1 lattice QCD at the physical
point, using the tree-level Symanzik gauge action and the
staggered quark action with four levels of stout smearing.
For other data points, they were obtained by the fixed sector
integral and the eigenvalue reweighting techniques from
three sets of unphysical simulations:
(a) Nf ¼ 3þ 1 (three flavors of physical ms and one

flavor of physical mc) for T ¼ 150–500 MeV;
(b) same as (a) but at fixed topology for T ¼

300–3000 MeV;

(c) Nf ¼ 2þ 1 overlap fermions at fixed topology for
three temperatures, T ¼ ð300; 450; 650Þ MeV, and
each for six mud quark masses between physical ms

and physical mphys
ud .

Thus, for comparison with other lattice results, we focus on
their data points in the range of T ¼ 150–300 MeV, which
were obtained by direct simulations at the physical point,
corrected by the eigenvalue reweighting, and extrapolated
to the continuum limit.
First, we compare the results of Bonati et al. [19],

Petreczky et al. [20], and Borsanyi et al. [21]. Evidently,
the discrepancies between Petreczky et al. and Borsanyi
et al. are much smaller than those between Bonati et al. and
Borsanyi et al. Moreover, after the results of Petreczky
et al. [20] are transformed from mπ ¼ 160 MeV to the
physical point by the relation χ1=4t ∝ mπ , they seem to be in
good agreement with the results of Borsanyi et al. [21].
In a more recent study by Bonati et al. [49] in Nf ¼

2þ 1 lattice QCD at the physical point with tree-level
improved Symanzik gauge action and the stout improved
staggered fermion action, using the multicanonical algo-
rithm (to enhance the topological fluctuations), they
obtained the continuum extrapolated χ1=4t ¼ ð3% 3%
2Þ MeV at T ≃ 430 MeV, which is ∼9σ different from
their previous result ∼38ð2Þ MeV in Ref. [19]. The
topological charge of each configuration is measured by
the clover charge after cooling. Then, in the most recent
study of the same group [50], using the same set of
ensembles at T ≃ 430 MeV [49], they obtained the con-
tinuum extrapolated χ1=4t ∼ 20ð3Þ MeV (read off from
Fig. 2 of Ref. [50]), which is ∼5σ different from their
2018 result [49] and ∼3σ different from 9(1) MeV of
Borsanyi et al. [21]. Note that in Ref. [50] two methods had
been used to measure the χt: 1) the index of the staggered
spectral projector and 2) the clover charge after cooling.
Both methods gave compatible results.
In Table VI, we compile all results of continuum

extrapolated χ1=4t at T ≃ 430 MeV, together with their
lattice actions, simulation methods and techniques, and
methods (gluonic and fermionic ones) for χt measurement.
We note that there are ongoing studies of χtðTÞ in Nf ¼

2þ 1þ 1 lattice QCD with Wilson twisted mass fermions
[22,51]. Using the relation χt ¼ m2

udχdisc to measure χt via
the noise estimation of the disconnected chiral susceptibil-
ity of u=d quarks, they obtained χ1=4t ∼ 10ð2Þ MeV at
T ≃ 430 MeV, with mπ ¼ 210 MeV and a ∼ 0.065 fm
[22]. Their recent results at the physical point with mπ ¼
139ð1Þ MeV and a ∼ 0.080 fm were presented in Ref. [51]
and at T ≃ 430 MeV, χ1=4t ∼ 4ð1Þ MeV (read off from
Fig. 2 of Ref. [51]). This implies that the continuum
extrapolated χ1=4 at T ≃ 430 MeV would be less than
4(1) MeV. This is added to Table VI for comparison with
other continuum extrapolated χ1=4t at the same temperature.

FIG. 6. Comparison of the continuum extrapolated fourth-root
topological susceptibility χ1=4t ðTÞ for four lattice studies.
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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tree-level improved Symanzik gauge action and the stout
improved staggered fermion action. The continuum limit of
χ1=4was obtained by extrapolationwith three lattice spacings
a ¼ ð0.0572; 0.0707; 0.0824Þ fm.The topological charge of
each configuration was measured by the clover charge after
cooling.
The results of Petreczky et al. [20] were obtained from

simulations of Nf ¼ 2þ 1 lattice QCD with mπ ¼
160 MeV and ms=mud ¼ 20 (physical ms), using the
tree-level improved gauge action and the highly improved
staggered quark action (HISQ). The continuum limit of χ1=4t
is obtained by extrapolation with three lattice spacings with
Nt ¼ ð8; 10; 12Þ. They used two methods to measure the
topological susceptibility: 1) the clover charge in the
Symanzik flow and 2) the chiral susceptibilities χπ and
χδ and the relation χt ¼ m2

udχdisc for T > Tc. Both methods
gave compatible results. In Fig. 6, only the data points
obtained with the clover charge are plotted.
The topological susceptibility of Borsanyi et al. [21] was

measured by the clover charge in the Wilson flow, and the
data points in Fig. 6 are based on the numerical results in
Table S9 of the Supplementary Information of Ref. [21],
which are supposed to be the continuum extrapolated
topological susceptibility of Nf ¼ 2þ 1þ 1 QCD at the
physical point, plus the theoretically estimated contribution
of the b quark and the correction for the mass difference
between u and d quarks. However, only seven data points in
the range of T ¼ 130–300 MeV were based on direct
simulations of Nf ¼ 2þ 1þ 1 lattice QCD at the physical
point, using the tree-level Symanzik gauge action and the
staggered quark action with four levels of stout smearing.
For other data points, they were obtained by the fixed sector
integral and the eigenvalue reweighting techniques from
three sets of unphysical simulations:
(a) Nf ¼ 3þ 1 (three flavors of physical ms and one

flavor of physical mc) for T ¼ 150–500 MeV;
(b) same as (a) but at fixed topology for T ¼

300–3000 MeV;

(c) Nf ¼ 2þ 1 overlap fermions at fixed topology for
three temperatures, T ¼ ð300; 450; 650Þ MeV, and
each for six mud quark masses between physical ms

and physical mphys
ud .

Thus, for comparison with other lattice results, we focus on
their data points in the range of T ¼ 150–300 MeV, which
were obtained by direct simulations at the physical point,
corrected by the eigenvalue reweighting, and extrapolated
to the continuum limit.
First, we compare the results of Bonati et al. [19],

Petreczky et al. [20], and Borsanyi et al. [21]. Evidently,
the discrepancies between Petreczky et al. and Borsanyi
et al. are much smaller than those between Bonati et al. and
Borsanyi et al. Moreover, after the results of Petreczky
et al. [20] are transformed from mπ ¼ 160 MeV to the
physical point by the relation χ1=4t ∝ mπ , they seem to be in
good agreement with the results of Borsanyi et al. [21].
In a more recent study by Bonati et al. [49] in Nf ¼

2þ 1 lattice QCD at the physical point with tree-level
improved Symanzik gauge action and the stout improved
staggered fermion action, using the multicanonical algo-
rithm (to enhance the topological fluctuations), they
obtained the continuum extrapolated χ1=4t ¼ ð3% 3%
2Þ MeV at T ≃ 430 MeV, which is ∼9σ different from
their previous result ∼38ð2Þ MeV in Ref. [19]. The
topological charge of each configuration is measured by
the clover charge after cooling. Then, in the most recent
study of the same group [50], using the same set of
ensembles at T ≃ 430 MeV [49], they obtained the con-
tinuum extrapolated χ1=4t ∼ 20ð3Þ MeV (read off from
Fig. 2 of Ref. [50]), which is ∼5σ different from their
2018 result [49] and ∼3σ different from 9(1) MeV of
Borsanyi et al. [21]. Note that in Ref. [50] two methods had
been used to measure the χt: 1) the index of the staggered
spectral projector and 2) the clover charge after cooling.
Both methods gave compatible results.
In Table VI, we compile all results of continuum

extrapolated χ1=4t at T ≃ 430 MeV, together with their
lattice actions, simulation methods and techniques, and
methods (gluonic and fermionic ones) for χt measurement.
We note that there are ongoing studies of χtðTÞ in Nf ¼

2þ 1þ 1 lattice QCD with Wilson twisted mass fermions
[22,51]. Using the relation χt ¼ m2

udχdisc to measure χt via
the noise estimation of the disconnected chiral susceptibil-
ity of u=d quarks, they obtained χ1=4t ∼ 10ð2Þ MeV at
T ≃ 430 MeV, with mπ ¼ 210 MeV and a ∼ 0.065 fm
[22]. Their recent results at the physical point with mπ ¼
139ð1Þ MeV and a ∼ 0.080 fm were presented in Ref. [51]
and at T ≃ 430 MeV, χ1=4t ∼ 4ð1Þ MeV (read off from
Fig. 2 of Ref. [51]). This implies that the continuum
extrapolated χ1=4 at T ≃ 430 MeV would be less than
4(1) MeV. This is added to Table VI for comparison with
other continuum extrapolated χ1=4t at the same temperature.

FIG. 6. Comparison of the continuum extrapolated fourth-root
topological susceptibility χ1=4t ðTÞ for four lattice studies.
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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tree-level improved Symanzik gauge action and the stout
improved staggered fermion action. The continuum limit of
χ1=4was obtained by extrapolationwith three lattice spacings
a ¼ ð0.0572; 0.0707; 0.0824Þ fm.The topological charge of
each configuration was measured by the clover charge after
cooling.
The results of Petreczky et al. [20] were obtained from

simulations of Nf ¼ 2þ 1 lattice QCD with mπ ¼
160 MeV and ms=mud ¼ 20 (physical ms), using the
tree-level improved gauge action and the highly improved
staggered quark action (HISQ). The continuum limit of χ1=4t
is obtained by extrapolation with three lattice spacings with
Nt ¼ ð8; 10; 12Þ. They used two methods to measure the
topological susceptibility: 1) the clover charge in the
Symanzik flow and 2) the chiral susceptibilities χπ and
χδ and the relation χt ¼ m2

udχdisc for T > Tc. Both methods
gave compatible results. In Fig. 6, only the data points
obtained with the clover charge are plotted.
The topological susceptibility of Borsanyi et al. [21] was

measured by the clover charge in the Wilson flow, and the
data points in Fig. 6 are based on the numerical results in
Table S9 of the Supplementary Information of Ref. [21],
which are supposed to be the continuum extrapolated
topological susceptibility of Nf ¼ 2þ 1þ 1 QCD at the
physical point, plus the theoretically estimated contribution
of the b quark and the correction for the mass difference
between u and d quarks. However, only seven data points in
the range of T ¼ 130–300 MeV were based on direct
simulations of Nf ¼ 2þ 1þ 1 lattice QCD at the physical
point, using the tree-level Symanzik gauge action and the
staggered quark action with four levels of stout smearing.
For other data points, they were obtained by the fixed sector
integral and the eigenvalue reweighting techniques from
three sets of unphysical simulations:
(a) Nf ¼ 3þ 1 (three flavors of physical ms and one

flavor of physical mc) for T ¼ 150–500 MeV;
(b) same as (a) but at fixed topology for T ¼

300–3000 MeV;

(c) Nf ¼ 2þ 1 overlap fermions at fixed topology for
three temperatures, T ¼ ð300; 450; 650Þ MeV, and
each for six mud quark masses between physical ms

and physical mphys
ud .

Thus, for comparison with other lattice results, we focus on
their data points in the range of T ¼ 150–300 MeV, which
were obtained by direct simulations at the physical point,
corrected by the eigenvalue reweighting, and extrapolated
to the continuum limit.
First, we compare the results of Bonati et al. [19],

Petreczky et al. [20], and Borsanyi et al. [21]. Evidently,
the discrepancies between Petreczky et al. and Borsanyi
et al. are much smaller than those between Bonati et al. and
Borsanyi et al. Moreover, after the results of Petreczky
et al. [20] are transformed from mπ ¼ 160 MeV to the
physical point by the relation χ1=4t ∝ mπ , they seem to be in
good agreement with the results of Borsanyi et al. [21].
In a more recent study by Bonati et al. [49] in Nf ¼

2þ 1 lattice QCD at the physical point with tree-level
improved Symanzik gauge action and the stout improved
staggered fermion action, using the multicanonical algo-
rithm (to enhance the topological fluctuations), they
obtained the continuum extrapolated χ1=4t ¼ ð3% 3%
2Þ MeV at T ≃ 430 MeV, which is ∼9σ different from
their previous result ∼38ð2Þ MeV in Ref. [19]. The
topological charge of each configuration is measured by
the clover charge after cooling. Then, in the most recent
study of the same group [50], using the same set of
ensembles at T ≃ 430 MeV [49], they obtained the con-
tinuum extrapolated χ1=4t ∼ 20ð3Þ MeV (read off from
Fig. 2 of Ref. [50]), which is ∼5σ different from their
2018 result [49] and ∼3σ different from 9(1) MeV of
Borsanyi et al. [21]. Note that in Ref. [50] two methods had
been used to measure the χt: 1) the index of the staggered
spectral projector and 2) the clover charge after cooling.
Both methods gave compatible results.
In Table VI, we compile all results of continuum

extrapolated χ1=4t at T ≃ 430 MeV, together with their
lattice actions, simulation methods and techniques, and
methods (gluonic and fermionic ones) for χt measurement.
We note that there are ongoing studies of χtðTÞ in Nf ¼

2þ 1þ 1 lattice QCD with Wilson twisted mass fermions
[22,51]. Using the relation χt ¼ m2

udχdisc to measure χt via
the noise estimation of the disconnected chiral susceptibil-
ity of u=d quarks, they obtained χ1=4t ∼ 10ð2Þ MeV at
T ≃ 430 MeV, with mπ ¼ 210 MeV and a ∼ 0.065 fm
[22]. Their recent results at the physical point with mπ ¼
139ð1Þ MeV and a ∼ 0.080 fm were presented in Ref. [51]
and at T ≃ 430 MeV, χ1=4t ∼ 4ð1Þ MeV (read off from
Fig. 2 of Ref. [51]). This implies that the continuum
extrapolated χ1=4 at T ≃ 430 MeV would be less than
4(1) MeV. This is added to Table VI for comparison with
other continuum extrapolated χ1=4t at the same temperature.

FIG. 6. Comparison of the continuum extrapolated fourth-root
topological susceptibility χ1=4t ðTÞ for four lattice studies.
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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• inconsistent with Chen et al (optimal DWF)
• getting closer to BW[continuum] for 𝑎 → 0
• Nt=16 already ~continuum or even undershoot ?

• more detailed study needed



Nf=2+1 Physical point computation of QCD thermodynamics with Möbius DWF
l use LCP, determined with T=0 JLQCD knowledge
l no surprise on the existence/non-existence on the transition
l machinery to treat power divergence, residual chiral symmetry effect is being finalized
l seemingly the both types of “divergence” are under control using Nf=3 results
l further improvement underway
l Disconnected chiral susceptibility show no hint of phase transition for Nt=12

l 𝑇!"≃ 𝑇!"(staggered)
l no surprise so far with chiral fermions

l Topological susceptibility showing large lattice artifact for Nt=12. Nt=16 promising.
Outlook

l refinement of power divergence subtraction using T=0 information of very fine MDWF
l 483 for Nt=12 and 16 are being run on Fugaku
l plan to be completed by the end of FY2025 with a few additional points on 643x16.
l use of these configuration underway

Ø see eg. talk by Goswami on charge fluctuation

Summary and Outlook



thank you for your attention



Light quark Σ = − 𝜓𝜓 : residual power divergence
• Σ|Z[\~

]; ^_]<=>

`?
+ Σ|abMC. +⋯ S. Sharpe (arXiv: 0706.0218)

𝑚/01 ≠ 𝑥𝑚/01;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It can be studied and 

reduced only by increasing 𝐿# - a very expensive proposition.” ‒ S. Sharpe.

• We propose another way to estimate 𝑥𝑚FGE using 𝑚′FGE
If chiral symmetry is restored → Σ|2345. = 0

→ 𝑚7 = −𝒙𝒎𝒓𝒆𝒔 is a zero of Σ|;<= which is related with

𝑚′/01 =
∑( ⟨@)* A B(D)⟩
∑( B(A B(D)⟩

(↔ 𝑚/01=
∑( ⟨@)* A⃗,5 B(D)⟩
∑( ⟨B A⃗,5 B(D)⟩

→ ⟨D @)* I⟩
⟨D|B|I⟩

(large 𝑡) )

𝑚7 = −𝑚/01′ is a zero of Σ|;<= (↔ 𝑚7 = −𝑚/01 is a zero of , 𝑚I
K )

Due to Axial WT identity:    (𝑚7+𝑚/01
L )∑A 𝑃(𝑥 𝑃(0)⟩ = Σ

From:                         ΔM 𝐴M 𝑥 𝑃 0 = 2𝑚7 𝑃 𝑥 𝑃 0 + 2 𝐽NO 𝑥 𝑃 0 − 2 Σ 𝛿A,D



Light quark Σ = − 𝜓𝜓 : residual power divergence
• Σ|HIJ = 𝐶H

KM LMKNOP

3Q
+ Σ|N2O1. +⋯ S. Sharpe (arXiv: 0706.0218)

𝑚@A" ≠ 𝑥𝑚@A";   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It 

can be studied and reduced only by increasing 𝐿# - a very expensive proposition.” 
‒ S. Sharpe.

• 𝑵𝒇 = 𝟑 case

• T>0 problem @ β=4.0
• T=0 exercise @ β=4.0, 4.1, 4.17
• T>0 div free Σ



Nf=3, Nt=12 chiral condensate

• only multiplicative renormalization 
applied

• quark mass: mres shift applied
• @T=0: 𝑚B → 0 , (𝑚C +𝑚@A") → 0
• Ls=16
• three volumes: 243, 363, 483

• Ls=32
• smaller mres, 243

• Intercept = 𝐶D
.(E.F)G$%&

H' < 0
• need to be subtracted
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Nf=3, T=0 chiral condensate

• Σ 𝑚 = 𝐶I + 𝐶E𝑚 + 𝐶/𝑚/ fit
• 𝐶E =

JP
H'
+ 𝐶K

• 𝐶D/𝑎/: divergent, 𝐶K: regular

• Σ|DLM = 𝐶D
G# NFG$%&

H' + Σ|OPQR. +⋯
• 𝐶D + 𝐶K𝑎/
• 𝐶D =0.37(2) from linear fit
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� = 4.17, N3
s ⇥Nt ⇥ Ls = 323 ⇥ 64⇥ 16

f1(x) = a1x
2 + b1x+ c1, c1 = 0.008(1),�2/dof = 0.86

f2(x) = a2x
2 + b2x+ c2, c2 = 0.0142(6),�2/dof = 0.26

f3(x) = a3x
2 + b3x+ c3, c3 = 0.014(2),�2/dof = 2.01



Nf=3, Nt=12 chiral condensate

• 𝑚TO ≃ 4 MeV
• 𝑚 < 𝑚TO : high T “phase”
• Σ|DLM → 𝐶D

.(E.F)G$%&
H' + Σ|OPQR.;			

(𝑚- → −𝑚@A")

• Σ|OPQR.=0 : renormalization cond.
• applied to determine 𝑥
• 𝑥=-0.6(1)  from 243x12x16
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Nf=3, Nt=12 chiral condensate

• 𝑚TO ≃ 4 MeV
• 𝑚 < 𝑚TO : high T “phase”
• Σ|DLM → 𝐶D

.(E.F)G$%&
H' + Σ|OPQR.;									

(𝑚- → −𝑚@A")
• Σ|OPQR.=0 : renormalization cond.
• applied to determine 𝑥
• 𝑥=-0.6(1)  from 243x12x16

• subtraction using these to all sets
• note: consistency Ls=16 <-> 32



 X

Renormalized chiral condensate

 T ≃ 181(3) MeV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 100 120 140

[h ̄ i � CD mq+xmres

a2 ]MS(µ = 2GeV)[GeV3]

(mq +mres)MS(µ = 2GeV) [MeV]

N3
s ⇥Nt ⇥ Ls = 243 ⇥ 8⇥ 16

N3
s ⇥Nt ⇥ Ls = 163 ⇥ 8⇥ 16

Multiplicatively renormalized chiral condensate Additive and multiplicatively 
renormalized chiral condensate

Subtracted chiral condensate vanishes in the chiral limit as expected since T> Tc 

 T ≃ 181(3) MeV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120 140

h ̄ iMS(µ = 2GeV)[GeV3]

(mq +mres)MS(µ = 2GeV) [MeV]

N3
s ⇥Nt = 243 ⇥ 8

N3
s ⇥Nt = 163 ⇥ 8


