Parallel Tempered Metadynamics an algorithm with potential

Timo Eichhorn

BERGISCHE UNIVERSITÄT **WUPPERTAL**

Japanese-German Workshop, Mainz, 27.9.2024

Christian Hoelbling with

Gianluca Fuwa

Lukas Varnhorst

(Wuppertal U.)

Funded by **DFG**

Deutsche Forschungsgemeinschaft German Research Foundation

The problem

Topological freezing: • Occurs even in the simplest theories with topology, e.g. 2D U(1) • Affects even the most basic observables, e.g. the plaquette

Plaquette

0

Why topological freezing?

- Continuum: Integer topological charge Q, disjoint topological sectors
- Lattice: Non-unique topological charge, sector boundaries smeared, become sharp towards the continuum

Conventional update algorithms need to transition between sectors, which can be ineffective for two reasons:

- Small corridor in configuration space
- Large action (small acceptance ratio) for intermediate configurations

 \rightarrow Critical slowing down $\propto a^{-5}$ or even exponential (Schaefer, Sommer, Virotta, 2010)

- Circumvent the problem: Open boundary conditions \rightarrow no topological sectors

Works in 2D U(1):

$$Q \propto \int F_{01}^2$$
$$S \propto \int F_{01}^2$$

 $\lim S_{\text{instanton}} = 0$ $V \rightarrow \infty$

What to do?

Treat frozen topology as finite volume effect

Hop between topological sectors: Explicitly add an instanton to change topological charge

- Parallel tempering:

 Simulate system simultaneously

 at different couplings (Hukushima, Nemoto, 1996) (UKQCD, 1998)
 - Periodically propose swaps between streams, Metropolis step

- Idea is more general: Temper between systems with different boundary conditions
 - Open defect volume, where topological charge can "vanish"
 - Considerable number of 0 intermediate streams

What to do?

(Cossu et.al., 2021)

----- standard algorithm

2.1

Monte Carlo updating step

1.8

1.9

2.2

2.3

2.4

 $\times 10^{\circ}$

(Bonnano et.al., 2024)

• Flatten the action barriers: Introduce additional bias potential V(Q)

✓ Simulation no more stuck in one sector X Relative weight of configs wrong Reweighting factor $e^{-V(Q)}$

- Static bias potential: Multicanonical ensemble (Berg, Neuhaus, 1992)
- Dynamic buildup: Metapotential (Laio, Martinelli, Sanfilippo, 2015)

What to do?

What to do?

- Update on coarse lattices via Wilson flow (Lüscher, 2009)
- Multi-scale thermalization (Endres et. al., 2015)
- Non-equilibrium ensembles (abandon detailed balance) (Pinto Barros, Marinkovic, 2022)
- Generate configs via ML (direct sampling or hybrid)

Many other ideas (will not be covered)

General idea:

- Pick collective variable(s): Q_{meta}
- Add time dependent bias potential $V(Q_{meta})$ to action
- Build up $V(Q_{\text{meta}})$: -Start with V = 0(simplest case) -When at Q, increase V(Q):
 - $V(q) \rightarrow V(q) + w e^{-(Q-q)^2/(2\delta^2)}$

Gaussian, weight W, width δ

- $V(Q_{\text{meta}})$ approaches negative free energy (up to additive constant) ullet
- Probability density flattened over collective variable(s)

Metadynamics

Metropolis update

 $Metropolis + Instanton \ update$

0	K.	10	15
0	0	10	10
0			
()			
∞meta			

Topological charge definitions

10

Bias potential buildup may be efficiently parallelized:

✓ Start in different sectors

Only bias potential needs to be communicated

✓ Convergence at least as good as single stream

Parallel buildup

Strong dependence of barrier height on lattice spacing

12

Standard algorithm continuum scaling in 4D SU(3)

13

Standard algorithm continuum scaling in 4D SU(3)

Update scheme	Relative t Wilson action
1HB+4OR 1HMC	$\begin{array}{c}1\\3.56\end{array}$
MetaD-HMC (4stout) MetaD-HMC (5stout)	$\begin{array}{c} 95.48\\ 114.02 \end{array}$

 Q_{meta} expensive to compute (smearing): local updates not feasible \rightarrow HMC HMC requires $\partial Q_{\text{meta}} / \partial U_{\mu} \rightarrow \text{stout force recursion needed}$

Metadynamics in 4D SU(3)

Wilson plaquette action, $\beta = 6.4035$, $V = 22^4$

DBW action,

Large Q excursions as bias potential builds up

$$\beta = 1.25, V = 16^4$$

Problem solved? Not quite!

$\tau_{\text{int}}(Q^2)$: from $\gtrsim 4 \times 10^5$ (HMC, 1HB+4OR)

Modifying the bias potential

Remove long range (quadratic) term:

Original bias potential 50Piecewise subtraction \checkmark Curbs large |Q|SSA 40 excursions 30 $V(Q_{
m meta})$ 20X Small weight inter-barrier 10configs remain 0 -10 -**Technical details:** -6 Q_{meta}

2D U(1): parametric description (parabolic + Fourier)

4D SU(3): piecewise subtraction, singular spectrum analysis, ... result insensitive to details of procedure

Parallel Tempered Metadynamics

Fully eliminate ESS problem:

- •One conventional, efficient update stream (frozen, no ESS problem) (measurement)
- •One stream with a fixed bias potential (unfrozen, ESS problem) (tunneling)
- Periodically propose swaps, accept with Metropolis step
- ✓Same physical system → no physical action difference
- $\sqrt{\text{Swap acceptance } p} = \min(e^{V(Q_{\text{meta},1}) V(Q_{\text{meta},2})}, 1)$
- No restriction on update algorithms in streams
- Trivially expandable to multiple streams
 - How does it perform?

Tunneling in measurement stream

ESS=#configs

 \checkmark Large |Q| excursions curbed

Test in 4D SU(3)

best results:

- static bias potential
- quadratic term
 removed

swap acceptance: ~0.25

ר

2D U(1) comparison

✓Topological observables as good as MetaD swaps with MetaD stream

✓Plaquette improved no reweighting (ESS=#configs)

XInstanton hit still better only 2D U(1) as we saw

Scaling in 2D U(1)

- Tempering swaps totally independent of update in streams
- \checkmark No need to compute physical action, as it is the same in all streams
- \checkmark Swaps only need Q_{meta} , same as in pure gauge theory
- ✓ Streams are trivially parallelizable
- ✓ Relative overhead of Q_{meta} computation much smaller

full QCD should just work

How about QCD?

Full QCD: first look

- DBW2 gauge action, $\beta = 1.25 \rightarrow a^{-1} \sim 3.5 4$ GeV
- $N_f = 2$ staggered fermions ma = 0.02, 4-stout $\rho = 0.125$
- $V = 16^4 \rightarrow L \sim 0.8 \text{ fm}$ (close to T_c)
- $Q_{\rm meta}$: 6-stout $\rho = 0.12$ clover charge
- 6 walkers, $\delta = w = 0.2$

Full QCD: first look

Full QCD: first look

parametric potentials, flow-based swaps, ...

Backup

Singular spectrum analysis

- Compute lag-covariance matrix C
- Diagonalize $C \rightarrow$ orthogonal modes

• Paired modes, $\pi/2$ phase shift \rightarrow oscillation

- Rest: trend, noise
- Cutoff high modes: reduce noise

0.2

0.0

Singular spectrum analysis

• Compute lag-covariance matrix C 40 • Diagonalize $C \rightarrow$ orthogonal modes 30 • Paired modes, $\pi/2$ phase shift \rightarrow oscillation 20 • Rest: trend, noise 10 Cutoff high modes: reduce noise • 0

-10

Quadratic subtraction in 2D U(1)

Fourier analysis in 2D U(1)

