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The problem
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Topological freezing: • Occurs even in the simplest theories with topology, e.g. 2D U(1)

• Affects even the most basic observables, e.g. the plaquette

β = 3.2

β = 7.2

β = 12.8

Plaquette



Why topological freezing?
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• Continuum: 

• Lattice:

Integer topological charge , 
disjoint topological sectors

Q

Non-unique topological charge, 
sector boundaries smeared, become 
sharp towards the continuum

Conventional update algorithms need to 
transition between sectors, which can 
be ineffective for two reasons:

• Small corridor in configuration space


• Large action (small acceptance ratio) for intermediate configurations

→Critical slowing down  or even exponential∝ a−5 (Schaefer, Sommer, Virotta, 2010)
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What to do?
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• Circumvent the problem:


• Hop between topological sectors:

Open boundary conditions →no topological sectors 
 
Treat frozen topology as finite volume effect

(Lüscher, Schaefer, 2010)

Explicitly add an instanton to change topological charge
(Fucito, Solomon, 1984)

(Brower et. al., 2003)
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Works in 2D U(1):

Q ∝ ∫ F01

S ∝ ∫ F2
01

Q ∝ ∫ FF̃

S ∝ ∫ F2

Does not work 4D SU(3):

lim
V→∞

Sinstanton = 0
Sinstanton =

4
3

π2β |Q |

(Bogomolnyi, 1976)

F = F̃



What to do?
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• Parallel tempering: Simulate system simultaneously  
at different couplings


Periodically propose swaps between  
streams, Metropolis step

(Hukushima, Nemoto, 1996)

(UKQCD, 1998)

(Cossu et.al., 2021)

Idea is more general: Temper between systems with different boundary conditions
(Hasenbusch, 2017)

Open defect volume, where 
topological charge can “vanish”


Considerable number of 
intermediate streams
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Q
L

parallel tempering
standard algorithm

(Bonnano, Bonati, d’Elia, 2021)

SU(6), 10-17 replica

(Bonnano et.al., 2024)

QCD, 10-24 replica



What to do?
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• Flatten the action barriers: Introduce additional bias potential V(Q)

✓Simulation no more stuck in one sector


✘  Relative weight of configs wrong

Static bias potential: 
Multicanonical ensemble 
 

Dynamic buildup: Metapotential

(Berg, Neuhaus, 1992)

(Laio, Martinelli, Sanfilippo, 2015)

Reweighting factor e−V(Q)



What to do?
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• Update on coarse lattices via Wilson flow 

• Multi-scale thermalization 

• Non-equilibrium ensembles (abandon detailed balance) 

• Generate configs via ML (direct sampling or hybrid)

Many other ideas (will not be covered)

(Lüscher, 2009)

(Endres et. al., 2015)

(Pinto Barros, Marinkovic, 2022)

→
↓

←



Metadynamics
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General idea:

• Pick collective variable(s): 


• Add time dependent bias potential  to action


• Build up : 

 

 

•  approaches negative free energy (up to additive constant)


• Probability density flattened over collective variable(s)

Qmeta

V(Qmeta)

V(Qmeta)

V(Qmeta)

-Start with 


-When at , increase : 

 

Gaussian, weight , width 

V = 0

Q V(Q)

V(q) → V(q) + we−(Q−q)2/(2δ2)

w δ

(simplest case)

w

δ
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Topological charge definitions

10

2D U(1): Integer definition: 




Continuous definition:


Q =
1

2π
Im (∑

x

ln Ptx)

Qcont = Qmeta =
1

2π
Im (∑

x

Ptx)
4D SU(3): Qc =

1
32π2 ∑

x

Tr (FF̃)

,  from clover averages with 

~30 step stout smearing, 


 with less smearing

F F̃
ρ = 0.12

Qmeta
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Parallel buildup
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Bias potential buildup may be efficiently parallelized:

✓Start in different sectors 

✓Only bias potential needs to be communicated 

✓Convergence at least as good as single stream



Bias potential in 2D U(1)
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Strong dependence of barrier height on lattice spacing
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Standard algorithm continuum scaling in 4D SU(3)

13

0.04 0.06 0.08 0.10 0.12

a[fm]

101

102

103

104

ø i
n
t(

Q
2 c
)

5.
89

80

6.
00

00

6.
09

38

6.
18

02

6.
26

02

6.
33

44

6.
40

35
Ø

1HMC

1HB

5HB

1HB+4OR

z = 4.90(13)

z = 5.55(25)

z = 5.43(22)

z = 5.503(91)



0.04 0.06 0.08 0.10 0.12

a[fm]

101

102

103

104

ø i
n
t(

Q
2 c
)

5.
89

80

6.
00

00

6.
09

38

6.
18

02

6.
26

02

6.
33

44

6.
40

35
Ø

1HMC

1HB

5HB

1HB+4OR

z = 4.90(13)

z = 5.55(25)

z = 5.43(22)

z = 5.503(91)

Standard algorithm continuum scaling in 4D SU(3)
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 expensive to compute (smearing):

                                       local updates not feasible → HMC
Qmeta

HMC requires  → stout force recursion needed∂Qmeta/∂Uμ



Metadynamics in 4D SU(3)
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Bias potential buildup
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DBW action, , β = 1.25 V = 164

Large  excursions as bias potential builds upQ



Metadynamics in 4D SU(3)
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DBW action, , β = 1.25 V = 164
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Problem solved? Not quite!



Effective sample size
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✓Autocorrelation time of  dramatically improved:


✘Relative weight of configs decreases 
with effective sample size

Q2

: from  (HMC, 1HB+4OR)

               to          (MetaD-HMC)
τint(Q2) ≳ 4 × 105

∼ 2000

continuum scaling in 2D U(1)

ESS =
(∑i wi)

2

∑i w2
i

large  enhanced

(unwanted)
|Q |

barriers enhanced

(necessary)



Modifying the bias potential
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Remove long range (quadratic) term: continuum scaling in 2D U(1)

✓Curbs large  
excursions 


✘Small weight 
inter-barrier 
configs remain

|Q |

Technical details:


2D U(1): parametric description (parabolic + Fourier)


4D SU(3): piecewise subtraction, singular spectrum analysis, …

                result insensitive to details of procedure



Parallel Tempered Metadynamics
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Fully eliminate ESS problem:

•One conventional, efficient update stream (frozen, no ESS problem) 
                                                                    (measurement)


•One stream with a fixed bias potential (unfrozen, ESS problem) 
                                                              (tunneling)


•Periodically propose swaps, accept with Metropolis step

✓Same physical system → no physical action difference


✓Swap acceptance 


✓No restriction on update algorithms in streams


✓Trivially expandable to multiple streams

p = min(eV(Qmeta,1)−V(Qmeta,2),1)

How does it perform?



Test in 4D SU(3)
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✔︎ Tunneling in measurement stream         ✔︎ ESS=#configs         ✔︎Large  excursions curbed|Q |



Test in 4D SU(3)
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swap acceptance:

~0.25

best results:

•static bias potential 

•quadratic term 
removed

measurement stream

tunneling stream

sum (~tunneling events)
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2D U(1) comparison
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✓Topological observables as good as MetaD 

✓Plaquette improved 

✘Instanton hit still better

no reweighting (ESS=#configs)

swaps with MetaD stream

only 2D U(1) as we saw
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Scaling in 2D U(1)
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✓Indication for constant continuum scaling



How about QCD?
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✓Tempering swaps totally independent of update in streams


✓No need to compute physical action, as it is the same in all streams


✓Swaps only need , same as in pure gauge theory


✓Streams are trivially parallelizable


✓Relative overhead of  computation much smaller

Qmeta

Qmeta

full QCD should just work



Full QCD: first look
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• DBW2 gauge action,   


•  staggered fermions , 4-stout 


•          (close to )


• : 6-stout  clover charge


• 6 walkers, 

β = 1.25 → a−1 ∼ 3.5 − 4 GeV

Nf = 2 ma = 0.02 ρ = 0.125

V = 164 → L ∼ 0.8 fm Tc

Qmeta ρ = 0.12

δ = w = 0.2

bias potential from 5000 trajectories



Full QCD: first look
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Full QCD: first look

28



Conclusions and outlook

29

•PT-MetaD works in QCD!


•Tunnels without ESS reduction


•Easy to implement, parallelize


•Open source codes on GitHub:


•Potential further improvements: Multiple streams, different potentials, 
                                                    optimize buildup (well-tempered MetaD, OPES, …),  
                                                    parametric potentials, flow-based swaps, …

MetaQCD.jl

Lettuce

https://github.com/GianlucaFuwa/MetaQCD.jl/tree/dirac
https://github.com/timo-eichhorn/Lettuce
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Thank you!
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Backup



Singular spectrum analysis
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• Compute lag-covariance matrix 


• Diagonalize  → orthogonal modes


• Paired modes,  phase shift → oscillation


• Rest: trend, noise


• Cutoff high modes: reduce noise

C

C

π/2



Singular spectrum analysis
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• Compute lag-covariance matrix 


• Diagonalize  → orthogonal modes


• Paired modes,  phase shift → oscillation


• Rest: trend, noise


• Cutoff high modes: reduce noise

C

C

π/2



Quadratic subtraction in 2D U(1)
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Fourier analysis in 2D U(1)
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