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My team: LQCD + ML

“Machine Learning Physics Initiative” ML PhYs
2022-2027, 10M USD, 70 researchers

Director : K. Hashimoto %

.

Bo1 A.Tanaka: Math and Application of DL H

B02 Y.Kabashima: Statistical data ML

B03 K.Fukushima: Topology and Geometry of ML ﬁ

£
-

A01 A Tomiva: Computational physics "

- A02 M.Nojiri: High Energy Physics P hYS e

Deep Learning
and Physics
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https://mlphys.scphys.kyoto-u.ac.jp/en/

My team (AO1): LQCD + ML

Pl: Akio Tomiya (Me)

TWCU Kouji Kashiwa
LQCD, ML Fukuoka Institute

of Technology
LQCD, ML

B. J. Choi
U. of Tsukuba

post-docs
& external members ,

MLPhYs
Hiroshi Ohno Tetsuya Sakurai Yasunori Futamura
U. of Tsukuba U. of Tsukuba U. of Tsukuba
LQCD Computation Computation

ol ;

J. Takahashi Y. Nagai

Meteorological College U of Tokyo
e 'go P N ey

- Apply machine learning techniques on LQCD
(To increase what we can do)

- Find physics-oriented ML architecture

- Making codes for LQCD + ML

https://miphys.scphys.kyoto-u.ac.jp/en/


https://mlphys.scphys.kyoto-u.ac.jp/en/

' MLPhYs

measurement with BDT

AT, | s ; : e
u@i “ ‘j‘ ﬁ Lattlceucndl Finite density and ML e

‘,,',” l* o 15 o Quantum
=y [N pen source - o : temperature _thermodynamics using
If:l tGBM.P2 - . -0 i 0. . .
On Oin ' 'U 50 |_n:_1_-._; 1.n-r.n! H‘I’r - wgm LQCD (+ML) Wlth ‘IUIIa USIng QC DenSIty matrlx
going L. M7 This covers most of modern tech 051 02 and MADE
https://github.com/akio-tomiya/LatticeQCD.jl
0.0 + nn
(and associated sub-libraries ) 00 PoS LATTICE2022 (2023) 039
en source 10

b OW based ‘Transfor_mers )
amollnq Linear ©
]
/i M

A ML P hys i o

0.1 | Global symmetrice
%o

Transformer for o 7
dU(t)(l’l) ~ fermionic spin system )
2 = S?H( U//(tt)(n)) AO1 o 10 100 TP N
f |

num. of trainable parameters

. 2310.13222
Gauge covariant neural net 2306.11527

arXiv: 2103.11965

auge invariant : i
Gauge invari Spectral function with

Path optimization self-learning MG 1.0f Sparse Modeling
for finite H” |_Z . Ix=0.120,M/T=10, ZD. .. 1.00 —— HMC
o TDAof . |f ™ 0.75 SLMc P / w2 0.8
° [ deconfinement 1§ = _ 0.6
m— g e  transition 8 o T 030 '
I § 4r 15 10 0.25 ol . 0.4
Phys Rev. D 10 I316504 2r ¥ 1 0.00 0.2
(Figure from 1812 11506) 1+, . i, S
o 2 a4 e s w0 00 25 50 7.5 10.0 0.0 A S
Birth time T (MC time) 0 2 4 6 8 10
1810.07635 Phys. Rev. D 107, 054501 (arXiv: 2311.15233)

5 + on going


https://github.com/akio-tomiya/LatticeQCD.jl

Outline of my talk

Machine learning?

Machine learning 1. Transformer for O(3) spin model
for Lattice QCD 2. CASK: Gauge symmetric transformer

(Measurement -> Hiroshi’s talk)



Machine learning?



What is machine learning?

E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

V1

f{a,b,c}(x) = ax’+ bx+c

- X

2
f{ a,b,c}(x(d)) _ y(d)

1
f{a,b,c}(x) = ax*+bx+c E = 5 Z
d

a, b, c, are determined by minimizing £
(training = fitting by data)

Akio Tomiya



What is machine learning?

E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

V1

f{a,bac}(x) = ax’+ bx+c

Use of fitted function =

Inference
> X

X0
Now we can predict y value which not in the data

In physics language, variational method

Akio Tomiya



What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

6x6

&

Input

How can we formulate this “Black box”?
Ansatz?




What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

(0.000 ) Ap -
’ robabilit
6x6 0.000 y
0.8434
o736 | _—
= lo03456|— X
: 0.64 I B =
Image is a vector | -5 Regard >
(6x6=36 dim) | : | 1 2 3 4
A jRegard
36 dimension

4
®

‘ Images of “2”

10 dimension

yno

BT $
O

Images of “1”

Image recognition = Find a map between two vector spaces




What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

(0.000 Ap -
' robabilit
6x6 0.000 y
0.8434
10756 | _—
= lo3456[— X
- 0.0 — H =
Image is a vector | -5 Regard >
(6x6=36 dim) | : | T2 8 4
A () = 6(3)(W(3)G(2>(W(2>7+ A EAE) ad Regard
36 dimension o Input Neural net “0” =(1,0,0,...)
“1” =(0,1,0,...)
0 “2” =(0,0,1,...)
Images of “2”
. Input Output =(0.0,...7)

R —variational
.Images of “1” function
Fact: Neural network can mimic any function D‘-‘eP Learning

- - .- - and Physics
= A systematic variational function.

In this example, NN mimics image (36-dim vector) and label (10-dim vector)




What is the neural networks?

Neural network have been good job
Protein Folding (AlphaFold2, John Jumper+, Nature, 2020+), Transformer neural net

100

Score ALPHAFOLD 2
“ Higher is bett o
I g e r I S e e r € / ! '—\\ cov:g:wcc
A.gﬁ“' N
eco | . ALPHAFOLD [} “
a t
O Grerecs = sm‘? |1
40 Input sequencd (8 blocks) | | (" Y
1944 t
NS :\ o —_— 3D slruc(uln:
| frrc)
20 . |
0 « Recycling (three times ]
CASP7 CASP8 CASP9 CASP1I0O CASP11  CASP12 CASP13 CASP14
2006 2008 2010 2012 2014 2016 2018 2020

CASP

Neurallg_e2twork wave function for many body (Carleo Troyer, Science 355, 602 (2017) )

Variational energy
- (lower is better)
10—4 | | |

#1of u%its élc o 8 16 32

Neural net + “Expert knowledge” — Best performance



Transformer and Attention

Attention layer used in Transformers (GPT, Gemini) axi:1706.0s762

Output @} OpenAl
Probabilities
| Softtmax ) ChatG PT

| Linear |
3

(. )
| Add & Norm |}~
Feed

For\;vard
() ‘ =
Feed Attention
Forward D D) N x
A ‘ J
Nx | _—{Add & Norm J [ Ad,\j:;:gm .
Multi-Head Multi-Head
Attention Attention
— ) = Attention layer (in transformer model) has been
Positional Positional . " '
encoding (P ¢ =i introduced in a paper titled
Input Output - -
Embé;ddmg Embfding “Attention is all you need” (1706.03762)
- o State of the art architecture of language
(shifted right)

processing.
Attention layer is essential.

Figure 1: The Transformer - model architecture.



Transformer and Attention

Attention layer can capture non-local correlations axi:170s.0s7:2
Modifier in language can be non-local

re T

Eg.| am Akio Tomiya living in Japan, who studies machine learning and physics

In physics terminology, this is non local correlation.

The attention layer enables us to treat non-local correlation
with a neural net!

Simplified version of Attention/Transformer

| Skip connection

I > WOX =M= wxwEx)T
Non-local product $
X = am B WKX / (Non-local
AklO correlation)
: N Add & normalization |— X"’
™ ReLUMW'X | — T
Weighted
Array of Block-
word vectors irp:;sf_ Self-Attention These blocks
)V(Vord;\{ector (Trainable) (neural net) can be repeatedly
: matrix

applied



Transformer and Attention

Transformer shows scaling lows (power law) rXiv: 200108361
7 4.2
6 —— L=(D/5.4-1013)700% | 5.6 —— L=(N/8.8-101%)"0076
3.9
4.8
o 5
2 3.6 4.0
- 4
® 3.3 3.2
= 3
3.0
2.4
L= (Cmm/2.3 . 108)—0'050
2 . - - - 2.7 Y . - - .
107 1077 107> 103 10°! 10! 108 109 10° 107 107
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute’ used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

- It can be improved systematically

- Transformers requires huge data
(e.g. GPT uses all electric books in the world)
Because it has few inductive bias (no equivariance)



Equivariance and convolution

Akio Tomiya

Knowledge > Convolution layer = trainable filter, Equivariant

Filter on image

Laplacian filter

01]o0
K o|1]2]+
0|1]0

(Discretization of 9%)

shift to right

Edge detection

Trainable filter

W11

W12

W13

>I< W21

W22

W23

W31

W32

W33

shift to right

shift to right

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

Translational operation is commutable with convolutional neurons (equivariant)

This can be any filter which helps feature extraction (minimizing loss)
Equivariance reduces data demands. Ensuring symmetry (plausible Inference)
Many of convolution are needed to capture global structures




Machine learning + LQCD?



Akio Tomiya

Background of this work

Monte-Carlo integration is available

M. Creutz 1980

. . 1
Target integration _ —S U] S.ilUl =S, 0l U] — log det(D[U] + m)
= expectation value (0) = 7 DUe 6U) ' o

Monte-Carlo: Generate field configurations with “P[U] « ¢ >:tlUl» @ _ It gives expectation value

HMC: Hybrid (Hamiltonian) Monte-Carlo | Sy = Lo 442 4 xy)
De-facto standard algorithm (Exact) | . 2

Random momentum + EOM
= Random walk like algorithm




Background of this work

Monte-Carlo integration is available, but still expensive!

M. Creutz 1980

. . 1
Target integration — —Sel U1 SolU1 = S,uee U] — log det(D[U] + m)
= expectation value (0) = 7 DUe 6U) ' o

Monte-Carlo: Generate field configurations with “P[U] « ¢ >:tlUl» @ _ It gives expectation value

Propose and check

Y PLU
Mar!(ov- - Q oo
Chain

Production with @ IS numerically expensive
and how can we accelerate it? We use machine learning!



Background of this work

Generative neural net can make human face images

Neural nets can generate realistic human faces (Style GAN2)

o @ [ This Person Does Not Exist X +

- C’k & thispersondoesnotexist.com r VY RO

3 Apps 8 AkioTOMIYA & Google drive [l MIT-LAT B Deep Learningan.. /4 Zenn| 70757..

Realistic Images can be generated by machine learning!
Configurations as well? (proposals ~ images?)



Background of this work

Machine learning for LQCD, LQCD with machine learning

e Neural networks

e data processing techniques for 2d/3d data in
the real world (pictures)

* (Variational) Approximation (~ fitting)

* Generative NN can generate images/pictures

e [attice QCD is more complicated than pictures

I

. . . . . 1] 44471_#4‘? ‘\
e 4 dimension/relativistic i

]

Ty aun T H’ 11—77?#[_ TT T
EERERRE u: HH T ﬁ%fﬁfii&ilu INny
Hj‘ 3 . ﬁﬁﬂfri-” :ﬂTr&u

 Non-abelian gauge symmetry (difficult)

* Fermions (anti-commuting/fully quantum)
-> Non-local effective correlation in gauge field

 Exactness in MCMC is necessary!

* Q. How can we deal with?




Background of this work

Machine learning for LQCD, LQCD with machine learning

e Qur purpose of here is, realizing
neural network with gauge/globally- .

symmetric covariance <

 improvement of efficiency is not
current goal

* |n this talk, we apply our method to
generating configurations AS A
WORKING EXAMPLE

e Here we introduce two Transformers
for spin-system and gauge theory

 No physics but algorithm to realize
symmetry covariant neural nets

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/



Lattice QCD code for generic purpose -y

¥

Open source LQCD code in Julia Language L€

AT &Y. Nagai (AO1, A03)

= =g Open source (Julia Official package), Easy as Python and
ﬁ Lattlceucndl Fast as a fortran code -> Best for R&D purpose
-

~
Machines: Laptop/desktop/Jupyter/Supercomputers
Functions: SU(Nc)-heatbath, RHMC, Self-learning HMC, SU(Nc) Stout
Dynamical Staggered, Dynamical Wilson, Dynamical Domain-wall
Measurements
[ 1. Download Julia binary )
Start LQCD .
. : 2. Add the package through Julia package manager
IN 5 min . Y e
k 3. Execute! (without explicit compiling) y
https://github.com/akio-tomiya/LatticeQCD.jl
SU(3). Quenched, L=4"4, Heatbath Energy density att = 0.25 x 10 ' s
T Re ~ Mctime )

Minimize time for code development + actual calculations


https://github.com/akio-tomiya/LatticeQCD.jl

Demo Video: https://youtu.be/Z-CT8A2R_-w

~ julia_demo — -zsh — 80x24

Last login: Thu Sep 26 11:04:21 on ttys@22
julia_demo % ju

Install, parameter file wizard
run Full QCD(Wilson) HMC, pion correlator



https://youtu.be/Z-CT8A2R_-w

¥

Lattice QCD code "ﬁ

Nt

JuliaQCD: Open source LQCD code project AT &Y. Nagai
https://github.com/JuliaQCD
 LatticeQCD.jl: Wrapper of following package () https://arxiv.org/abs/2409.03030
e Easy to start, Suite :idulia(lCD
« QCDMeasurements.jl: ﬁLatticeQCDJl
Chiral Cond., Pion-propagator, Wilson loop etc
MPI @ QCDMeasurements.jl

* LatticeDiracOperators.jl: Lattice fermions LatticeDiracOperators.jl

(Wilson. Staggered, DW) and solvers

MPI Gaugefields.jl
* Gaugefields.jl: SU(N) gauge fields and action,
gradient flow. Zn gauge fields are now supported

Wilsonloop.jl CLIME_jlI
(%x). Auto-grad (automatic derivartive for force and

ML) MPI % LatticeDiracOperators.jl & Gaugefields.jl can be
executed without LatticeQCD.jl. See github page

* Wilsonloop.jl: Symbolic definition of Wilson loops

: : xx Thanks to O. Morikawa
and lines. They are converted to product of links

@ Star History

* CLIME: wrapping Clime. To treat ILDG format conf
More than 100 stars

on Github

Contributions are very welcome!


https://arxiv.org/abs/2409.03030

Applications on LQCD

Machine learning for lattice QCD

- 1. Transformer for O(3) spin model
2. CASK: Gauge symmetric transformer




Transformer for O(3) spin model

Target: Double exchange model

Target system: Classical Heisenberg spin S.+ Fermion on 2d lattice

J
. +h.c)+— ) S.-6; Kondo model
) 22 i O, (Kondo model)

[
\ \ Current of ¢

Hensenberg spin

Two different phases

- Anti-ferromagnet (~staggered mag)
- Paramagnet (~normal metal)

(This system is similar to lattice QCD

but easier)
3d vectors on 2d lattice

Anti-ferro magnet




Transformer for O(3) spin model

Previous work

Target system: Classical Heisenberg spin S + Fermion on 2d lattice

H=—1t Z (6:(0{’\](1 +h.c.)+— 2 S. - 0; (Kondo model)

Naive effective model:

Linear __ eft eff. -
H " = — Z JE'S. - Sj E, J.:n-th nearest neighbor
<i’j>7’l

J,fff Is determined by regression (training) to improve approximation

Self-learning Monte-Carlo:
Update with H . and Metropolis-Hastings with H & H

H ¢ has tunable parameters (couplings), which will be tuned.
Cancel in-exactness by MH-test,.This is an exact algorithms




Self-learning Monte-Carlo

SLMC = MCMC with an effective model

For statistical spin system, we want to calculate expectation value with

W({S}) x exp[—/H({S})]
On the other hand, an effective model H_+({S}) can compose in MCMC,
{ S }—={ S } = S }—{ S } this distributes W_5({S}) o exp[—fH_({S})]

if the update "—, satisfies the detailed balance. We can employ Metropolis test like

Ae({S}, (S}) = min (1,Wx({S'})/Wex({S))) .

SLMC: Self-learning Monte-Carlo
We can construct double MCMC with H({S}) and H,({S})

S} {8} = {S}—= {8} {S} —={S} = {S}—{S}—

W({S'}) Wer(1S})
WS} Wes({S) )

with Metropolis-Hastings test: A({S’}, {S}) = min (1

- Effective model can have fit parameters

- Exact! It satisfies detailed balance with W({S})
- It has been used for full QCD too (arXiv: 2010.11900, 2103.11965)



Transformer for O(3) spin model

Block spin transformation using neural net

Target system: Classical Heisenberg spin S.+ Fermion on 2d lattice

J
H=—-1t Z (6:.(0{6]-“ +h.c.)+ 5 2 S. - 0; (Kondo model)

. S. EO Jeff n-th nearest neighbor

n ¥ Nj
(6
We replace this by eft nol J 0

“translated” spin SZ.NN (b
with a transformer
and used in self-learning MC



Equivariant attention



Self-learning Monte-Carlo

Akio Tomiya

arXiv: 2306.11527.

Attention block makes effective spin field with non-local BST

L
1

A

—>I Add & Norm I

T

| Self-Attention block |
A

1

SA

A

Self-Attention block

S, = ReLUM) WS | <=

T

M = WOS(WESHT

] 1

Wos | [WES| | WS |4

r 1 1

S

Smearing (BST)
Rot. equivariant
Trsl. equivariant
trainable!




Self-learning Monte-Carlo

Equivariant under spin-rotation & translation o 2308 11807
ST=(s1 2 )’ -
. O(3) vect _ T T T T)
S/ ; ) veetar S=(s 8 S 8,
® 3 ® 4
- Local weighted sum over neighbors
= “Smeared spin” with parameters
~ “Block spin sum” with parameters
ca __ o
S, S, 5; = ZWZ i+l  a=QK,V
‘ T [=0
w/ € R : trainable
o7 — (1 2 3)'
;= (Si S; Si) Translationally equivariant

Rotationally equivariant

;1 = /(617 + 627 + (57

=1
3 component scalar, normalized



Self-learning Monte-Carlo

Equivariant under spin-rotation & translation

S=(s7 s s s])

SA

A

Self-Attention block
Sy = ReLUM)W" S| <+

T

M = WOS(WESHT

] 1

wWos | |WES| | wWYs

1 1

§?=W“S=Zwl“i

+1

S = (S‘

by ne

Gram matrix with averaged spin

M = G* = (S%)TS* «a=QKV

SISy 818,
5,81 8,5,
S35 835
S;S, SJS,

G=S'S =

S S
S S
S5 S
S; S,

Akio Tomiya

arXiv: 2306.11527.

)

st O(3) vector

l

“averaged spin”

ighbors

S!'S,
S)S,
SJS,
S.S,

Translationally covariant, Rotationally invariant

A set of correlators



Self-learning Monte-Carlo

Equivariant under spin-rotation & translation

S=(s7 s s sI)

SA

A

S, = ReLUM)W"S

correlators T

M = WOS(WESHT

] 1

—

Self-Attention block

Wes | | WES | | WYs
! I ]
S

S =WS= ) wis,

[

Akio Tomiya

arXiv: 2306.11527.

= (s 5 )]

st O(3) vector
“averaged spin”
by neighbors

Gram matrix with averaged spin
M = ~a — (SOC)TSG’ a=0Q.K,V

Translationally covariant

Rotationally invariant

S, = ReLUM)W"S

= ReLUWM)S"

A set of correlators



Self-learning Monte-Carlo

arXiv: 2306.11527.

Attention block makes effective spin field with non-local BST

( )

SO = (S(l_l) + SA> position-wise

A =S/IS
N A

)]
1

A

Self-Attention block

—>I Add & Norm I

T

| Self-Attention block |
A

S, = ReLUM) WS | <=

Smeared fields
Rot. equivariant
correlators T Trsl. equivariant

M = WOS(WKS)T Skip connection
T T Normalized!
Smearing (BST)
Q K V .
W=3 W=S WS Rot. equivariant

1 T T Trsl. equivariant
trainable!




Self-learning Monte-Carlo

arXiv: 2306.11527.

Variational Hamiltonian with Equivariant Attention layers

5 — H L SO = <S(l_1) + SA> position-wise
t C
— | Add & Norm I d 7
1) N (S, = Si/“Si”
Self-Attention block g
I eA ention bioC I \ ‘A
—>| Add & Norm I
t Self-Attention block
| SeII_Attentlon block | Sy = ReLUM) W' S |+ Smeared fields
—[ AddaNorm | , Rot. equivariant
3 / ] correlators T Trsl. equivariant
I Self-Attention block |<I\ M = WQS(WKS )T :Iklp cc:-nnzftlon
2 i ormalized!
|1

Smearing (BST)
0 K Vo |4
WSS WS WS |4 Rot. equivariant

1 T T Trsl. equivariant
trainable!




Transformer and Attention aXiv: 230811527 » uodare

Application to O(3) spin model with fermions

Acceptance rate ~ efficiency Observables
11 Transformers —e— g2,
Linear —&— 0.15 ,-1 e
2 08 = 01 -
© Pz Original —<—
o . _ 0.05 ¢ Linear .
S 0.6 Models with the attention 0 - 3layer attention —=—
= e
A &
g 04 o8 | Staggered mag.
< | < 06
0.2 I (same as previous work , = 04}
No attention) 02 | g
O | | | | \ \ \ 0 * ] * s .
0 1 2 3 4 5 6 7 8 0.01 0.1 1 10

Num. of attention layers T
~ # of parameters
Note: As far as we tested,
CNN-type does not work in this case.
No improvements with increase of layers.
(Global correlations of fermions from

Fermi-Dirac statistics make acceptance bad?)

o Io.o NXZNyZG

uli ‘Lattice sites!

Physical values are consistent
(as we expected)



Transformer and Attention

Akio Tomiya

Loss function shows Power-type scaling law as LLM

Acceptance rate = exp (—\/ MSE)

10 |

—h

Estimated |_OSS (M S E)

0.01

julia

Transformers O

Linear O
. Model w/o
- attention
©)
Models with the attention |
fit range
1 10 100

num. of trainable parameters

[1] arXiv:2001.08361

(1 layer ~ 30 parameters)

arXiv: 2306.11527 + update

5.6 ~—— L=(N/8.8-1013)"0076

4.8

4.0

3.2

Test Loss

*4| Scaling in LLM [1
10° 107 10°
Parameters

| Line IS just for
| guiding eyes

(ho meaning)

fit ~(7.1/x)A(1.1)

40




Applications on LQCD

Machine learning for lattice QCD

1. Transformer for O(3) spin model
- 2. CASK: Gauge symmetric transformer




Previous work of CASK AT Y. Nagal s 10 1o

Gauge cov net= trainable smearing (= residual flow)

Stout-type covariant net
staple

Ulu(n) — U/imr(n) = e zi szl[U] Ulu(n) VZ[U](n) = Z U,mU,(n+ U (n+ ) + -

\ HFV
Trainable param

Training done by the back-prop
(extension to the stout paper [1])

[y [ep : [70+D)

It is gauge covariant variational function for gauge field

Pros ©: Gauge/translational covariant
Cons @: It process data as same as convolution, it is local (not efficient)

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402


https://arxiv.org/abs/2305.02402

Configuration generation in LQCD "™

CASK?

Cask stout
(Whisky Barrel-Aged Stout beer)
= stout beer In a cask

IRISH COFFEE STOUT |33

CASK | BARREL AGED IMPERIAL ]2;9‘7
~ AGED IN paRR

ELS FROM CLONAKILTY DISH




Configuration generation in LQCD ** ™™

CASK = Stout kernel, gauge covariant transformer for LQCD

Cask stout
(Whisky Barrel-Aged Stout beer)
= stout beer In a cask

Add and la stout ) i
Covariant attention block

T CASK = Covariant Attention

Self-Attention with Stout Kernel
_ It is named in an obvious reason&




Configuration generation in LQCD "™

Collection of ML/LQCD

Lattice ML(Framework) ML+Lattice
. Phys. Rev. D 107, 054501 AT+
- Demon method (inverse MC :
ar)giv1508.04986 AT-?— Linear regression o Qauge inv. SLMC
- Hopping parameter Trivializing with SD eq a la Luscher
2212.11387 AT+
Stout & Flow CNN/Equivariant NN Gauge covariant net -
2021 AT+
| - Global symmetric
m(en;::c:g% ?) Transformer - GPT Transformer 2306.11527 AT+

- CASK (this talk) (g8




Configuration generation in LQCD "™

Ildea: Attention must be invariant

Attention matrix in transformer ~ correlation function (with block-spin transformed spin)

-> we replace it with “correlation function for links” in a covariant way

y . T
Transformer for Kondo spins K ai,u, JU Re tr UM(Z)U,M (J )
a.~S.-S. 1 | S — — —
! L
T / U'  notinvariant

~ (with activation)

. meematom Y (cannotbe used)
_______ OO0 ]

l J
invariant [JT invariant under
under global O(3) local SU(N)
— T — . —>_|_—> é. .
In total, output is covariant Qi in ™~ Re tr V, (l)U T(] ) (with activation)

2310.13222 AT+,2306.11527 AT+ In total, output is covariant WIP AT+




Configuration generation in LQCD "™

Structure of gauge symmetric attention using stout U274

Procedure in three steps: Loop operator
0. U™ : Input configuration/Links projected on Lie algebra

1. 3 types of (trainable) stout [1] -> U Q Yk UY (they have different weights)
U® = exp[p®LIUMU™  a=QKYV
t weights

2. Construct attention matrix (Extended Wilson loop) using U Q, Uk > A )

Q T
A\V \./UK ~ Cl(*,*) (

with activation)

3. Construct “stout smeared” [1] link with wei A« ) and Uv,U (as matrix mult)

U out — cXp [Cl(*,*)L[ U V]] U n Covariant

(This can be extend to have multi-head trivially) \_/ Loop operator

projected on Lie algebra

47



Configuration generation in LQCD "™

Physically symmetric Attention layer for LQCD 1] 2021 AT+

Attention layer can capture global correlation
Equivariance reduces data demands for training

. Capturable Data C
9
Equivariance Gauge” correlation demmands Applications
Convolution | ;, P | Nor\r/ﬁji’zﬁAl}llow
(cequvariant | Yes o= | Yes = | Local @ | Low = SLHMC
layers) 2103.11965 AT+
Standard . . | . ChatGPT
Attention layer No &) No & |Global :=| Huge @& | cemn
arXiv:1706.03762 Vision Transformer
Equivariant | . | Kondo system
attention for | YeS = No & |Global - = ? (2310.13222 AT+
spin 2306.11527 AT+)
Equivariant | |
attention for Yes & Yes <& |Global = ? WIP AT+
gauge




Configuration generation in LQCD "™

Simulation parameter WIP AT
Construct effective o _ : =
acion using oporators Self-learning HMC (1909.02255, 2021 AT+) ﬁdu"aucn
with U e Exact. Metropolis test and MD with effective action
T - e Target S : m = 0.3, dynamical staggered fermion, Nf=2,
Ut L* = 4% su@©), f = 2."]. In Metropolis test
- * Miarget — D stag[U] +m
Lo nome b e e Effective action S in Molecular dynamics
Self-Attention
t e Same gauge action
s o m.s = 0.4 dynamical staggered fermion, Nf=2
Self-Attention
* . Artificj{al example for mimicking different Dirac
‘ operator
Le,f_me,,ﬁo,, e CASK(smearing) with plaguette covariant kernel
*
| e Attention = 7-links rect staple (=3 plaguette)
MD M.=D Ueff eff
U ............... ........... ° uses off — stag[ ] +m

R — ----------- * |t can be regarded as “Adaptively reweighted HMC”
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Configuration generation in LQCD

Attention blocks improve acceptance WIP AT

0.3 T T T T T T T R ey
~—"CASK |
0.25
Stout
(covariant net
g 02r stout-type)
©
(]
=
o
(]
Q
(&]
< 01Ff
0.05 H STOUT —— A
- CASK2 ——
Acceptance rate w.r.t. training CASK3 ——
pASK4{————

O | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

epoch= MC steps

* |In terms of acceptance, CASK has gain
 Without trining, acceptance is zero. Training improves acceptance
e After 5000 epoch, CASK is still improving

 Application? -> Future work



S u m m a ry Alfi(:Tomiya

Machine learning + lattice field theory bl
e Production and measurement need numerical cost

Q) Springer

e Machine learning is useful for natural science/physics/Lattice QCD
e Supervised learning requires data ahead of training
e Self-learning does not require data (Self-learning HMC, flow based).
e Gauge symmetry is now handled
 The developed nets (transformers) works keeping symmetries

 Apply to several generative NN approaches?

* Codes for LFT+ML are needed lela
 Minimize code developing time + execution time :iduliaQCD

e Maybe not only for machine learning, but also general R&D?
e Julia might be good choice?

e Efficiency? We need more effort

' S KAKENHI: 20K14479, 22H05112, 22H05111, 22K03539 Thanks!






Self-learning Monte-Carlo

SLMC = MCMC with an effective model

For statistical spin system, we want to calculate expectation value with

W({S}) x exp[—/H({S})]
On the other hand, an effective model H_+({S}) can compose in MCMC,
{ S }—={ S } = S }—{ S } this distributes W_5({S}) o exp[—fH_({S})]

if the update "—, satisfies the detailed balance. We can employ Metropolis test like

Ae({S}, (S}) = min (1,Wx({S'})/Wex({S))) .

SLMC: Self-learning Monte-Carlo
We can construct double MCMC with H({S}) and H,({S})

S} {8} = {S}—= {8} {S} —={S} = {S}—{S}—

W({S'}) Wer(1S})
WS} Wes({S) )

with Metropolis-Hastings test: A({S’}, {S}) = min (1

- Effective model can have fit parameters

- Exact! It satisfies detailed balance with W({S}) (exact)
- It has been used for full QCD too (arXiv: 2010.11900, 2103.11965)



What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

(0.000
6x6 0.000
0.8434
_| 0756 | _—
~lo34s6|= A
: 0.64
Image is a vector | ;,5; Regard
(6x6=36 dim) | :
A

36 dimension Neural net

<
‘.

’ Images of “2”

Input

Y S
Q

Images of “1”




Configuration generation in LQCD ** ™™

Loss = difference of action WIP AT+

Loss w.r.t. training

100
10} { * | oss decreases along
= . with the training steps
) L:
s _
s | o it works as same as the
5 oot stout (covariant net)
0.001 — —
| | o Gain?
0.0001 : : : :
0 200 400 600 800 1000
epoch
= MC steps
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Akio Tomiya

Configuration generation with machine learning is developing

Year | Group ML | Dim. | Theory | Gaugesym | Exact? Fermion? Lattice2021/ref
2017| AT+ +R|-E|;|\I>|Ao 2d Scalar - No No arXiv: 1712.03893
2018| K.Zhou+ | GAN | 2d Scalar - No No arXiv: 1810.12879
2018 | J. Pawlowski + fm\‘c 2d Scalar - Yes? No arXiv: 1811.03533
2019 MIT+ | Flow 2d Scalar - Yes No arXiv: 1904.12072
2020 MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413
2020 MIT+ Flow 2d SU(N) | Equivariant Yes No arXiv: 2008.05456
2020 AT+ |SLMC| 4d SU(N) | Invariant Yes Partially arXiv: 2010.11900
2021 | M. meavidovic+ | A-NICE | 2d Scalar - No No arXiv: 2012.01442
2021 |S. Foreman | L2HMC| 2d U(1) Yes Yes No

2021| AT+ |SLHMC| 4d QCD | Covariant Yes YES!

2021 D:-bg% Flow 2d | Scalar, O(N) - Yes No

2021 MIT+ | Flow | 2d | Yukawa - Yes Yes

2021/ S Foreman, | Flowed | 2d U(1) | Equivariant| Yes | No but compatible | arXiv: 2112.01586
2021| XY Jing | Neura 2d U(1) | Equivariant | Yes No

2022 | J. Finkenrath | Flow 2d U(1) | Equivariant Yes |Yes (diagonalization)|  arxiv: 2201.02216
2022 MIT+ Flow 2d U(1) Equivariant Yes Yes (diagonalization) arXiv:2202.11712

This is not complete list. Related to lattice field theory and biased

+ ...
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Machine learning for theoretical physics

What am 1?
| am a particle physicist, working on lattice QCD.
| want to apply machine learning on lattice QCD.

My papers https://scholar.google.co.jp/citations?user=LKVqy wAAAAJ

Detection of phase transition via convolutional neural networks
A Tanaka, A Tomiya Detecting phase transition
Journal of the Physical Society of Japan 86 (6), 063001

Digital quantum simulation of the schwinger model with topological term via adiabatic

state preparation _
B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, A Tomiya Quantum computing
arXiv preprint arXiv:2001.00485 for quantum field theory

Biography
2006-2010 : University of Hyogo (Superconductor)
2015 : PhD in Osaka university (Particle phys)
2015 - 2018 : Postdoc in Wuhan (China)
2018 - 2021 : SPDR in Riken/BNL (US)
2021 - . Assistant prof. in IPUT Osaka (ML/AI)

Kakenhi and others
Leader of proj AO1 Transformative Research Areas, Fugaku

WAL -
Deep Learning " ey MLPhY: e e

B, Z T T T S Foundation of "Machine Learning Physics'
and PhySICS ﬁﬁ%ﬁ’%@? ngobl 6 Grantin-Aid for Transformative Research Areas (A) J Y Eihgﬁ’esviﬁlfpﬁgiﬁeo?ﬁ?tZLmnﬁiﬂflS?

+quantum computer
= Others:
Q) Springer B A A ) . .
s 2024 The 29th Outstanding Paper Award of the Physical Society of Japan
Organizing "Deep Learning and physics 2023 Supervision of Shin-Kamen Rider

2021 14th Particle Physics Medal: Young Scientist Award



My team: LQCD + ML

“Machine Learning Physics Initiative” ML PhYs
2022-2027, 10M USD, 70 researchers

Director : K. Hashimoto %

.

Bo1 A.Tanaka: Math and Application of DL H

B02 Y.Kabashima: Statistical data ML

B03 K.Fukushima: Topology and Geometry of ML ﬁ

£
-

A01 A.Tomiva: Computational physics "

- A02 M.Nojiri: High Energy Physics P hYS o

Deep Learning
and Physics

D -
I* N @ )
‘_( ":
¥ K=



https://mlphys.scphys.kyoto-u.ac.jp/en/

My team (AO1): LQCD + ML

Pl: Akio Tomiya (Me)

TWCU Kouji Kashiwa
LQCD, ML Fukuoka Institute

of Technology
LQCD, ML

B. J. Choi
U. of Tsukuba

post-docs
& external members ,

MLPhYs
Hiroshi Ohno Tetsuya Sakurai Yasunori Futamura
U. of Tsukuba U. of Tsukuba U. of Tsukuba
LQCD Computation Computation

ol ;

J. Takahashi Y. Nagai

Meteorological College U of Tokyo
0,"';»

- Apply machine learning techniques on LQCD
(To increase what we can do)

- Find physics-oriented ML architecture

- Making codes for LQCD + ML

https://miphys.scphys.kyoto-u.ac.jp/en/


https://mlphys.scphys.kyoto-u.ac.jp/en/

measurement with BDT

Quantum calculation

' MLPhYs

1Al
. 1200 b | I”::.j:_‘,!‘;,“ll a ice - 2.0 4
[ % | P .s| Finite density and
7?“ s Al : Open source 2 temperature
ox:ig§1111l lié ) 0 X ™ ... 0 .
1 ! Il]I;l:]lir('Bll"]:;::j: lfl"ﬁl']! l:i;)" "lf‘:‘ﬂ LQCD (+ML) With Ju'la N USIng QC
On going R S

l ML + QC:

o6 Quantum

| thermodynamics using
| Density matrix

I-°-2 and MADE

This covers most of modern tech wb
Broken
https://github.com/akio-tomiva/Lattice QCD.jl 0.0+

PoS LATTICE2022 (2023) 039

(and associated sub-libraries )

low based
sampling

/\Mth julia MY\

arXiv: 2208.08903

dU(n)

= GIU(n))

Gauge covariant neural net
arXiv: 2103.11965

Path optimization
for finite ur L=

x=0.120, M/T = 10, Z,

T Ao 1™

. ® I deconfinement |j§ o
m ger trans,i.t—i'(")n 1H 100
Phys. Rev. D 108, 094504 2+
(Figure from 1812.115086) i

o

0 2 4 6 8 10

10

ML Phys

0.1

AO1

1 10 100 mo g™

Gauge configuration

Gauge invariant
self-learning MC

1.0

1.00 —— HMC
0.75 SLMc ,0/(«02 0.8
§ 0.50 0.6

—_

0.25 E - 0.4
0.00 0.2
00 25 50 7.5 10.0 0.0

Transformers ©
Linear O

0]

. Global symmetrice ,
Transformer for %004
2rmionic spin system

num. of trainable parameters

2310.13222
2306.11527

Spectral function with
Sparse Modeling

Sign problem
60

Birth time

1810.07635

T (MC time)
Phys. Rev. D 107, 054501

0 2 4 6 8 10
(arXiv: 2311.15233)

+ on going


https://github.com/akio-tomiya/LatticeQCD.jl

Other projects are going (with me)

“Program for Promoting Researches
on the Supercomputer Fugaku”

e Simulation for basic science: approaching the new quantum era
* PIl: Shoji Hashimoto

e Search for physics beyond the standard model using large-scale lattice QCD simulation
and development of Al technology toward next-generation lattice QCD

e PIl: Takeshi Yamazaki

C\ED

BRIKEN

61



Intro: Lattice QCD& Monte-Carlo  *° ™

LQCD = Non- perturbatlve calculation of QCD

~QCD in 3 + 1 dimension =

1
S = Jd“x[ — Etr F,F"+ lp(i@ + gA — m)l//]

J'@A@l//@yje F aw = 0 Ay — dyA — ig[Aﬂ,Ay]

QCD in Euclldean 4 dlmensmn (|mag|nary tlme)

1
S = Jd“x[ EtrF F +l/7(@ —1gA +m)l//]

1772017,

= J@A@W@we‘s

e Same Hamiltonian with real-time formalism
e Static property is the same (mass etc)

e How to calculate?



An example

Example: Plaquette — TrM —3 estimation (P2, ID-0)

) %]
B s g

--

[\
o

R,y (labeled set

[a—
o O

0 10 20 30 40 50 60 70 80 90 100
Rrgr (training set) |%]

(a) Y (central value) check

# Y score: white, orange, red

1 %0

12

Trace estimation by ML

N}

-

Yo
W W =
o O O ot

ik

N}
(2

(labeled set) |

[\)
e

il 1.9

15

ING2E  1.71 1.94 2.79

1.82 1.86 206 217 235 3.1

Ryip
o S

2.12 2.33 23

0 10 20 30 40

2.53

20

3.3

60

3.32

70

80
Rrg (training set) %]

90 100

(b) Magnitude of op2/00rig.

Eval. 1: central value check
= consistently white region

n Ris > 30%, Rrr < 50%

Eval. 2: op2/00rig. check
= Roughly op2 S 1.100rig.
in Rig > 30%, Rrr < 50%

29 July 2024 12 /17

63



M Otivation Akio Tomiya

Monte-Carlo integration is available, but still expensive!

M. Creutz 1980

. . 1
Target integration — —Sel U1 SolU1 = S,uee U] — log det(D[U] + m)
= expectation value (0) = 7 DUe 6U) ' o

Monte-Carlo: Generate field configurations with “P[U] « ¢ >:tlUl» @ _ It gives expectation value

Propose and check

Y PLU
Mar!(ov- - Q oo
Chain

Production with @ IS numerically expensive
and how can we accelerate it? We use machine learning!



Introduction

Use of symmetry is crucial

Symmetries are essential for theoretical physics.

This is actually true as well in machine learning.
Equivariance/Covariance of symmetries helps generalization,
and avoiding wrong extrapolation

(Symmetry restricts the function form)

Example in ML.:

If data is translationally symmetric like photo images,

the frame work should respect this and one should implement
with this translational symmetry in a neural network

= Convolutional neural net!

In physics + Machine learning,
= Physics embedded neural networks

We use symmetry in the system
as much as we can



Introduction
What is our final goal for QCD + Machine learning?

What we want to solve using machine learning?

- Reduction of numerical cost to beyond our current numerical limitations
- Production and measurements
- Use of machine learning may be useful

Restrictions (problems) to use ML.:
- Exactness & quantitative. Machine learning is an approximator
- Gauge symmetry, global symmetry is essential. While ML is not for physics
- Code. How can we make neural nets w/ HPC? (not showing in this talk)
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Introduction
What is our final goal for our research field?

A
Quark-Gluon Plasma

In short, we simulate of elementary particles in nuclei

Using super computers + Lattice QCD, we can understand...
- melting of protons/neutrons etc. at high temperatures
- attractive/repulsive forces between atomic nuclei

- candidate properties of dark matter
etc.



Intro: Lattice QCD& Monte-Carlo  *° ™

Numerical integral (via trapezoidal type) is impossible

1
S = Id4x[ Etr F,F,,+ 1/7(@ —1gA + Wl)l//]

1
Laftice reqularization SN IIRVATIES a’ Z [— —2Re tr UW + l/'/(D + m)l//]
8

a is lattice spacing (cutoff)
They are "same” up to irreverent operators Re 7~ -1 22a*F2 + 0(ab)
Uv 2 Uv

" 1
(0) == | DUDYDye>0O(U) = — J@Ue-sgaugewl det(D + m)O(U)

V4

N|— N|-—

II‘_

QZUe‘ AUIGU)

H HdU (n)

ne{Z/L}* u=1

>1000 dim, no hope with
trapezoidal type numerical Integration -> use (Markov-chain) Monte Carlo



Flow based sampling algorithm

Trivialization is attractive

~

, Joint dist. 2V N
QFT probability: Plg] = =) = P(¢,, py, -+, hpa) -
Propagating modes 4

~ correlations _ _
Can we find a change of variable?

©

Trivial distribution tri
P = 1r(z)r(zy) 1
Trivial theory [2] = r(2)r(z)--r(z4) B
No propagation, factorized r(z;) probability for 1 variable
(Not the Gaussian FP) Easy to sample

- Correlations in P[¢] makes theory non-trivial and it makes MCMC harder.
- PM[7] = r(z21)r(2,)---r(z74) has no correlation, sampling is trivial.
- Actually, there is a map between them. Trivializing map!

- We can trivialize the target theory

Famous example: Nicolai map in SUSY. Change of variable
makes theory bilinear (~trivial). How about for non-SUSY?

arxiv 1904.12072, 2003.06413, 2008.05456 and more.

Nicolai, H., Phys. Lett. 89B, 341 (1980); Nucl. Phys. B176, 419 (1980).
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Related works

Flow based algorithm = neural net represented flow algorithm

Real scalar in 2 dimension MIT + DeepMind 2019~

.7 TN L7 RS
. N
. N . N
’ h 4 \
' h \
' \ |' g /\ A
' 1
Z 1
' [ = —
b, 4 \ 3 (e Si
\ 1 s ’ \ N
. 3 \_
N e
~ P
~ -

couple

. . 4 - v; . Y
- N TN\
r(z) Py () (=) (@)
cen 0t ity .. 2 04 4
- ‘ - \/ @\. ( @
combine

(a) Normalizing flow between prior and output distributions

-4 @

(b) Inverse coupling layer

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ¢ distributed
according to ps(¢). The mapping f~'(z) is constructed by composing inverse coupling layers g; ' as defined in Eq. (10) in
terms of neural networks s; and ¢; and shown diagrammatically in (b). By optimizing the neural networks within each coupling
layer, p¢(¢) can be made to approximate a distribution of interest, p(¢).

Their sampling strategy

sample gaussian — inverse trivializing map — QFT configurations

Calculate Jacobian
After sampling, Metropolice-Hasting test (Detailed balance)— exact!

arxiv 1904.120/2, 2003.06413, 2008.05456
70



Configuration generation in LQCD "™

Convolution layer = trainable filter

Filter on image

Laplacian filter

O 110
>1< 1 1-2] 1 Edge detection
O/ 110

(Discretization of 0°)

If input is shifted, output is shifted= respets transnational symmetry

Convolution layer

B , Fukushima, Kunihiko (1980)
o Trainable filter Zhang, Wei (1988) + a lot!

Edge detection Gaussian filter
W11 | W12 | W13 e
I 1
L SmO%thln : 1_6 2 4 o
W21 [ W22 | W23 — (Gaussian filter) T
W31 | W32 | W33 | (Training and data determines what kind of filter is realized)

Extract features

Convolution respects transnational symmetry as well



Configuration generation in LQCD "™

Smearing = Smoothing of gauge fields
Coarse image Smoothened image

We want to smoothen gauge field configurations
with keeping gauge symmetry

APE-type smearin
Two types: P 9 M. Albanese+ 1987

Stout-type smearing e



Configuration generation in LQCD "™

Smearing ~ neural network with fixed parameter!

. ) ] ] AT Y. Nagai arXiv: 2103.11965
General form of smearing (~smoothing, averaging in space)

z,(n) =wU,(n) + w,&[U]  Summation with gauge sym

fate\ — A local function
U, m) = A(z,(n)) (Projecting on the gauge group)

It has similar structure with neural networks,

[ __ D)., (I-1 1) Matrix product
Zi( = Wl§' )uj( ) T bi( ) vector addition

j .
D _ (Do element-wise (local)
l/tl.( ) = 6( )(Zi( )) Non-linear transf.
Typically o ~ tanh shape

(Index i in the neural net corresponds to n & g in smearing. Information processing with NN is evolution of scalar field)

Multi-level smearing = Deep learning (with given parameters)

As same as the convolution, we can train weights.



Configuration generation in LQCD "™

Simulation parameter

e Self-learning HMC (1909.02255, 2021 AT+), $+LatticeQCD.jl
an exact algorithm

Construct effective * Exact Metropolis test and MD with effective action

action using operators

with U e Target S :m = 0.3, dynamical staggered fermion, Nf=2,
A _________________________ L L* = 4% suU@), f = 2.7. In Metropolis test
B o Effective action S in Molecular dynamics
- .
P e Same gauge action
= S n)

o m.r = 0.4 dynamical staggered fermion, Nf=2

Gauge covariant neural net
(Adaptive smearing)

iV 910311965 * Gauge covariant neural network (adaptive stout)
- ___________ e Bare U is fed, adaptively smeared U eff ig pop out

S — ___________ o U links are replaced by U in Dy,

* “Adaptively reweighted HMC”
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Application for the Full QCD in 4d

2500 1

2000 1

1500 1

Count

1000 -

500 -

0.70
Plaquette

3000 -
2500

. 2000 1

c

2

S 1500
1000 1

500 -

0

[

L T———

0.38

0.40

0.42

0.44

0.46

Chiral condensate

0.48

0.50

AT Y. Nagai arXiv: 2103.11965

|  HMC I| |
40001 | SLHMC
J
., 3000 1
c
3 i
o
© 2000 - I
]
|
1000 - ‘ A
. L3 ’ i ‘ : !
O . PR RS B BELRS I" . .
-1.0 -0.5 0.0 0.5 1.0

Polyakov loop

Expectation value Acceptance = 40%

Algorithm Observable Value
HMC Plaquette 0.7025(1)
SLHMC Plaquette 0.7023(2)
HMC |Polyakov loop| 0.82(1)
SLHMC |Polyakov loop| 0.83(1)
HMC Chiral condensate 0.4245(5)

SLHMC  Chiral condensate 0.4241(5)

What is showed?
Covariant net can mimic/absorb mass difference
SLHMC (~Adaptive reweighting) works



