Machine Learning Estimation on the Trace of Inverse Dirac operator

Hiroshi Ohno¹

In Collaboration with Benjamin J. Choi¹, Takayuki Sumiomto² and Akio Tomiya³ ¹University of Tsukuba, ²FLECT Co., ³Tokyo Woman's Christian University

Program for Promoting Researches on the Supercomputer Fugaku Large-scale lattice QCD simulation and development of Al technology

German Japanese Workshop 2024 Johannes Gutenberg-Universität Mainz September 27, 2024

Motivation

- The trace of operators (TrO) are often needed to calculate observables
 e.g. O = M⁻ⁿ, where M is the Dirac operator
- Calculating Tr*M*⁻ⁿ on the lattice: **computationally demanding**
 - *M*: a large sparse matrix
 - The inversion of $M \rightarrow$ many matrix-vector multiplications within a CG solver
 - Stochastic trace estimation \rightarrow many matrix inversions
- We study estimation of $Tr M^{-n}$
 - from other observables which can be given with a cheaper computational cost such as plaquette, Polyakov loop, TrM^{-m} where m < n
 - using a machine learning technique
 - Is this possible? \rightarrow Let's see correlations between observables.

Correlations between observables

- An observable can be estimated from another
 - if there is sufficiently strong correlations between them
 - \rightarrow Sometimes this is true.

Hiroshi Ohno

Machine Learning Estimation on the Trace of Inverse Dirac operator

Machine learning estimation

- Similar to Yoon *et al.*, PRD **100** 014504 (2019).
- Modeling observables
 - input: X, target: Y, model: $f(X) = Y^P \cong Y$
 - The functional form of f is not known \rightarrow Machine learning
 - Our choice: Gradient Boosting Decision Tree

Iteratively creating an ensemble of improved models → Giving an averaged model

$$f_1 \to f_2 \to \cdots \to f_m$$

- Depth, Ensemble size (boosting stage) : hyperparameters
- Correcting the prediction bias

$$\langle Y \rangle_{\rm BC} = \langle Y^P \rangle + \langle Y - Y^P \rangle$$

Data handling

- Splitting data into two sets
 - Labeled set (N_{LB}) : input and target data for training (N_{TR}) and bias correction (N_{BC})
 - Unlabeled set $(N_{\rm UL})$: input data for estimation
 - $M = N_{\rm LB} + N_{\rm UL}$
 - $N_{\rm LB} = N_{\rm TR} + N_{\rm BC}$

Prediction

• $\mathcal{P}1$: bias corrected ML prediction

$$\overline{Y}_{\mathcal{P}1} = \frac{1}{N_{\mathrm{UL}}} \sum_{i \in \{\mathrm{UL}\}} Y_i^P + \frac{1}{N_{\mathrm{BC}}} \sum_{j \in \{\mathrm{BC}\}} (Y_j - Y_j^P)$$

- $\mathcal{P}2$: weighted average of $\mathcal{P}1$ and target data of the labeled set
 - to improve the statistical precision

$$\overline{Y}_{\mathcal{P}2} = \frac{N_{\mathrm{UL}}}{M} \overline{Y}_{\mathcal{P}1} + \frac{N_{\mathrm{LB}}}{M} \overline{Y}_{\mathrm{LB}}, \qquad \overline{Y}_{\mathrm{LB}} = \frac{1}{N_{\mathrm{LB}}} \sum_{i \in \{\mathrm{LB}\}} Y_i$$

• Statistical errors are given by the bootstrap method.

German Japanese Workshop 2024 Hiroshi Ohno

Numerical setup

- Using data from HO *et al*. PoS **LATTICE2018** (2018) 174.
 - Iwasaki gauge and $N_f = 4$ Wilson clover fermion actions
 - Plaquette, Polyakov loop, $Tr M^{-n}$ (n = 1, 2, 3, 4)

ID	$L^3 \times T$	β	κ	$c_{ m SW}$	N _{conf}
0	$16^3 \times 4$	1.60	0.13575	2.065	5500
1	$16^3 \times 4$	1.60	0.13577	2.065	5500
2	$16^3 \times 4$	1.60	0.13580	2.065	5500
3	$16^3 \times 4$	1.60	0.13582	2.065	5500
4	$16^3 \times 4$	1.60	0.13585	2.065	5500

← 1st order phase transition

LightGBM

- Gradient boosting Decision Tree
 - using LightGBM framework (<u>https://lightgbm.readthedocs.io/en/stable/</u>)
 - via JuliaAI/MLJ.jl package (<u>https://github.com/JuliaAI/MLJ.jl</u>)
 - boosting stage = 40: empirically determined by monitoring the L2 loss.
 - depth = 3, learning rate = 0.1, subsampling = 0.7: same as Yoon et al., PRD 100 014504 (2019)
- All calculations were done by Benjamin J. Choi (CCS, U. of Tsukuba)

Evaluations of results

- Evaluation 2
 - If a ML result get Score 2 and give $\sigma_{\chi}/\sigma_{\rm Orig.}\approx 1$

\rightarrow The ML result imitates the original data as well as possible

Searching for optimal ratio of labeled/training set

• To reduce of the computational cost

 \rightarrow need to know sufficiently minimal ratio of the labeled set to the entire data

$$R_{\rm LB} = \frac{N_{\rm LB}}{M} = 5, 10, \dots, 50\%$$

• For sufficient statistical precision of the bias correction

 \rightarrow need to know sufficiently maximal ratio of the training set to the labeled set

$$R_{\rm TR} = \frac{N_{\rm TR}}{N_{\rm LB}} = 10, 20, \dots, 90\%$$

- Also
 - $-R_{\rm TR} = 0\%$ to check the statistical precision of the labeled set
 - $-R_{\rm TR} = 100\%$ to check the result without the bias correction

Example result: plaquette \rightarrow Tr M^{-3} ($\mathcal{P}1$, ID-0)

Evaluation 1.

cannot find consistently score-2 region

Evaluation 2.

Roughly $\sigma_{\mathcal{P}1}/\sigma_{\text{Orig.}} \approx 1.5$ in $R_{\text{LB}} \geq 30\%$, $R_{\text{TR}} \leq 50\%$

Example result: plaquette \rightarrow Tr M^{-3} ($\mathcal{P}2$, ID-0)

Evaluation 1.

consistently score-2 region in $R_{\rm LB} \ge 30\%$, $R_{\rm TR} \le 50\%$

Evaluation 2.

Roughly $\sigma_{\mathcal{P}1}/\sigma_{\text{Orig.}} \approx 1.1$ in $R_{\text{LB}} \geq 30\%$, $R_{\text{TR}} \leq 50\%$

Preliminary results: ID-0 (heaviest quark mass)

- $\mathcal{P}2$ results
- {sufficiently minimal *R*_{LB}, sufficiently maximal *R*_{TR}}

ID-0	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
$\mathrm{Tr}M^{-1}$	$\{30, 50\}$	$\{35, 40\}$			
$\mathrm{Tr}M^{-2}$	$\{30, 50\}$	$\{35, 40\}$	$\{25,40\}$		
$\mathrm{Tr}M^{-3}$	$\{30, 50\}$	$\{35, 40\}$	{ 40 , 40}	$\{15,70\}$	
$\mathrm{Tr}M^{-4}$	$\{45,60\}$	$\{45,60\}$	$\{40, 40\}$	$\{35,50\}$	$\{25, 40\}$

- $\text{Tr}M^{-n}$ (n = 1,2,3) can be accurately estimated from plaquette and Polyakov loop with $R_{\text{LB}} \ge 30\%$ and $R_{\text{LB}} \ge 35\%$, respectively.
- Not good at estimating TrM^{-4} : $R_{LB} \ge 45\%$.

Preliminary results: ID-2 (close to the 1st order PT)

- $\mathcal{P}2$ results
- {sufficiently minimal *R*_{LB}, sufficiently maximal *R*_{TR}}

ID-2	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
$\mathrm{Tr}M^{-1}$	$\{10, 80\}$	$\{10, 80\}$			
$\mathrm{Tr}M^{-2}$	$\{10,90\}$	$\{10, 80\}$	$\{10,90\}$		
$\mathrm{Tr}M^{-3}$	$\{10,90\}$	$\{10, 70\}$	$\{10,80\}$	$\{10,90\}$	
$\mathrm{Tr}M^{-4}$	$\{40, 40\}$	$\{40, 80\}$	$\{40,80\}$	$\{40,80\}$	$\{40,80\}$

- $\text{Tr}M^{-n}$ (n = 1,2,3) can be accurately estimated from plaquette and Polyakov loop with $R_{\text{LB}} \ge 10\%$.
- Not good at estimating $Tr M^{-4}$: $R_{LB} \ge 40\%$.

Preliminary results: ID-4 (lightest quark mass)

- $\mathcal{P}2$ results
- {sufficiently minimal *R*_{LB}, sufficiently maximal *R*_{TR}}

ID-4	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
$\mathrm{Tr}M^{-1}$	{ 30 , 40}	$\{35, 40\}$			
$\mathrm{Tr}M^{-2}$	$\{30, 50\}$	$\{40, 50\}$	{ 30 , 40}		
$\mathrm{Tr}M^{-3}$	N.A.	N.A.	N.A.	N.A.	
$\mathrm{Tr}M^{-4}$	N.A.	N.A.	N.A.	N.A.	N.A.

- N.A.: cannot find proper $\{R_{LB}, R_{TR}\}$.
- $\text{Tr}M^{-n}$ (n = 1,2) can be accurately estimated from plaquette and Polyakov loop with $R_{\text{LB}} \ge 30\%$ and $R_{\text{LB}} \ge 40\%$, respectively.

Summary and outlook

- The ability of machine learning estimation of TrM^{-n} from plaquette, Polyakov loop and TrM^{-m} (m < n) was checked by Using LightGBM via JuliaAI/MLJ.jl.
- The ML estimation works better for heavier quark masses and especially around the 1st order phase transition point.
- We also found that the bias correction works well.
- Extending the analysis to other ensembles with different parameters:
 - larger volume, finer lattice, ...
- Calculating cumulants of the chiral order parameter from the estimated traces and checking the accuracy.

Backup slides

Preliminary results: ID-1 (second heaviest quark mass)

- $\mathcal{P}2$ results
- {sufficiently minimal *R*_{LB}, sufficiently maximal *R*_{TR}}

ID-1	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
$\mathrm{Tr}M^{-1}$	$\{30, 40\}$	$\{35,40\}$			
$\mathrm{Tr}M^{-2}$	$\{20,50\}$	$\{35,40\}$	$\{15,40\}$		
$\mathrm{Tr}M^{-3}$	$\{25,50\}$	$\{35,40\}$	$\{30, 60\}$	$\{20,80\}$	
$\mathrm{Tr}M^{-4}$	$\{45, 40\}$	$\{50, 40\}$	$\{45,50\}$	$\{45,50\}$	$\{25,50\}$

- $\text{Tr}M^{-n}$ (n = 1,2,3) can be accurately estimated from plaquette and Polyakov loop with $R_{\text{LB}} \ge 30\%$ and $R_{\text{LB}} \ge 35\%$, respectively.
- Not good at estimating $Tr M^{-4}$: $R_{LB} \ge 45\%$.

Preliminary results: ID-3 (second lightest quark mass)

- $\mathcal{P}2$ results
- {sufficiently minimal *R*_{LB}, sufficiently maximal *R*_{TR}}

ID-3	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
$\mathrm{Tr}M^{-1}$	$\{10,60\}$	$\{20, 80\}$			
$\mathrm{Tr}M^{-2}$	$\{10,90\}$	$\{10, 60\}$	$\{10, 80\}$		
$\mathrm{Tr}M^{-3}$	$\{10, 70\}$	$\{10, 50\}$	$\{15,60\}$	$\{10,90\}$	
$\mathrm{Tr}M^{-4}$	$\{40,50\}$	$\{40, 50\}$	$\{40, 50\}$	$\{40,50\}$	$\{40,50\}$

- $\text{Tr}M^{-n}$ (n = 1,2,3) can be accurately estimated from plaquette and Polyakov loop with $R_{\text{LB}} \ge 10\%$.
- Not good at estimating $Tr M^{-4}$: $R_{LB} \ge 40\%$.

Optimal boosting stage

Machine Learning Estimation on the Trace of Inverse Dirac operator

Correlation map: ID-0 and ID-1

(a)
$$\kappa = 0.13575$$
, ID 0

German Japanese Workshop 2024 Hiroshi Ohno

Machine Learning Estimation on the Trace of Inverse Dirac operator

Correlation map: ID-2 and ID-3

${ m Tr} M^{-1}$	- 1.0	0.998	0.994	0.84	0.996	0.991	1.0	${ m Tr} M^{-1}$	- 1.0	0.993	0.981	0.7	0.991	0.977	1.0
${ m Tr} M^{-2}$	-0.998	1.0	0.998	0.849	0.999	0.993	- 0.8	${ m Tr} M^{-2}$	- 0.993	1.0	0.994	0.725	0.997	0.981	- 0.8
${ m Tr} M^{-3}$	0.994	0.998	1.0	0.874	0.996	0.99	- 0.6	${ m Tr} M^{-3}$.	- 0.981	0.994	1.0	0.783	0.988	0.972	- 0.6
${ m Tr} M^{-4}$	- 0.84	0.849	0.874	1.0	0.844	0.841	- 0.4	${ m Tr} M^{-4}$:	- 0.7	0.725	0.783	1.0	0.709	0.704	- 0.4
Plaquette	-0.996	0.999	0.996	0.844	1.0	0.993	- 0.2	Plaquette	- 0.991	0.997	0.988	0.709	1.0	0.981	- 0.2
Polyakov loop	0.991	0.993	0.99	0.841	0.993	1.0		Polyakov loop	0.977	0.981	0.972	0.704	0.981	1.0	
	T.A.	Tr.A.2	R.H.s.	True	Plaquetto	op o	0 .0		T.H.	R.H.s.	P. W.S.	T.A.	Plaquette	QQ AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ A	— 0.0

(c)
$$\kappa = 0.13580$$
, ID 2

German Japanese Workshop 2024 Hiroshi Ohno Machine Learning Estimation on the Trace of Inverse Dirac operator (d) $\kappa = 0.13582$, ID 3

Correlation map: ID-4

(e) $\kappa = 0.13585$, ID 4

German Japanese Workshop 2024 Hiroshi Ohno Machine Learning Estimation on the Trace of Inverse Dirac operator

Example result: plaquette \rightarrow Tr M^{-3} ($\mathcal{P}1$, ID-2)

Evaluation 1.

consistently score-2 region in $R_{\rm LB} \ge 10\%$, $R_{\rm TR} \le 90\%$

Evaluation 2.

Roughly $\sigma_{\mathcal{P}1}/\sigma_{\text{Orig.}} \approx 1.3$ in $R_{\text{LB}} \ge 10\%$, $R_{\text{TR}} \le 70\%$

Example result: plaquette \rightarrow Tr M^{-3} ($\mathcal{P}2$, ID-2)

consistently score-2 region in $R_{\rm LB} \ge 5\%$, $R_{\rm TR} \le 90\%$

Evaluation 2.

Roughly $\sigma_{\mathcal{P}1}/\sigma_{\text{Orig.}} \approx 1$ in $R_{\rm LB} \ge 10\%$, $R_{\rm TR} \le 70\%$

Example result: plaquette \rightarrow Tr M^{-3} ($\mathcal{P}1$, ID-4)

Evaluation 1.

cannot find consistently score-2 region

Evaluation 2.

Magnitude of $\sigma_{\mathcal{P}1}/\sigma_{\text{Orig.}}$ is randomly distributed

Example result: plaquette \rightarrow Tr M^{-3} ($\mathcal{P}2$, ID-4)

Evaluation 1.

cannot find consistently score-2 region

Evaluation 2.

Magnitude of $\sigma_{\mathcal{P}1}/\sigma_{\text{Orig.}}$ is randomly distributed