

CRC 1660 Kick-Off, Mainz, Germany

th ~ 10th, 2024

The HP2030 program ran at the *Institut Pascal* of the *Université Paris-Saclay* from October 21st up to November 8th 2024, associating the theoretically oriented MDHS initiative and the experimentally oriented JPhys⁺⁺ initiative. https://indico.ijclab.in2p3.fr/event/10641/

MDHS : Multidimensional Hadron Structure at the Dawn of the High-Precision Era

The scientific goal of **MDHS** was to initiate the reflexion about the **theoretica**l and **phenomenological tools** needed to exploit the full potentiality of **high-precision data** (JLab, EIC) and to **connect experimental data with hadron structures**.

C. Mézrag and collaborators

JPhys++ : Physics Opportunities with Jefferson Lab Positron and Energy Upgrades

The scientific goal of **JPhys++** was to develop and obtain the scientific material necessary for **new experimental proposals** and **new directions of research** in support of the **JLab Upgrade Initiatives.**

E. Voutier and collaborators

Form factors

- I. The proton charge radius r_E^p
- II. The proton electric form factor $G_E^p(Q^2)$
- III. The proton axial form factor $G_A^p(Q^2)$

Muti-photon exchange

- I. Two-Photon Exchange (TPE) effects in elastic scattering
- II. Coulomb corrections in DIS
- III. Mott polarimetry

Compton form factors

- I. Hadron dynamics
- II. Deeply Virtual Compton Scattering (DVCS)
- III. Double Deeply Virtual Compton Scattering (DDVCS)

Tests of the Standard Model

- I. Dark matter search
- II. Electroweak processes
- III. Other phenomena

Form factors

- I. The proton charge radius r_E^p
- II. The proton electric form factor $G_E^p(Q^2)$
- III. The proton axial form factor $G_A^p(Q^2)$

Muti-photon exchange

- I. Two-Photon Exchange (TPE) effects in elastic scattering
- II. Coulomb corrections in DIS
- III. Mott polarimetry

Compton form factors

- I. Hadron dynamics
- II. Deeply Virtual Compton Scattering (DVCS)
- III. Double Deeply Virtual Compton Scattering (DDVCS)

Tests of the Standard Model

- I. Dark matter search
- II. Electroweak processes
- III. Other phenomena

Proton Radius PuzzleS

The **proton radius puzzle** originates from the disagreement between **muonic hydrogen spectroscopy** and electron scattering as well as ordinary hydrogen spectroscopy measurements of the proton electric charge radius.

- incompletete?
- Are there additional corrections to the muonic Lamb shift due to the proton structure?
- Are higher moments of the charge distribution accounted for in the extraction of the charge radius?
- Is there an extrapolation problem in electron scattering data ?
- Has the violation of lepton universality been discovered?
- Is this an indication of new force carriers?

Electron Scattering Landscape

o After 14 years of investigations, the current status of electron scattering data points towards a tension between the latest PRad 2019 and Mainz 2010 data.

Reconstructed scattering angle [deg]

A. Gasparian et al. PR12-20-004

- \circ The second PRad experiment is designed to be 3.5 times more precise than the first one, taking down the precision to 0.0043 fm.
- o This involves **improved statistics** (4 times less uncertainties) and hardware upgrade to reduce systematics.

 1.7_m

 5.0_m

 2.0_m

MAGIX

- The MAinz Gas Injection target eXperiment (MAGIX) is designed to operate at the Mainz Energy recovering Superconducting Accelerator (MESA) at a luminosity of 10^{35} cm⁻²s⁻¹.
- o Involving a windowless **jet gas target, high resolution spectrometers** (~10⁻⁴, 1 mrad), and a 1 mA electron beam current, the setup is expected to achieve electromagnetic form factor measurements with a precision better than 0.1%.

SBS-GEP @ Hall A

E. Cisbani, M.K. Jones,N. Lyanage, L. Pentchev, A. Puckett, B. Wojtsekhowski et al. E12-07-109

o The large Q² behaviour of the proton electromagnetic form factor ratio will be measured in the SBS-GEP polarization transfer experiment.

Axial Form Factor @ LERF A. Deur @ HP2030

-
- Taking advantage of a high intensity ($I_e < 1$ mA), highly polarized ($P_e > 80$ %) electron beam with low energy $(T_e$ < 150 MeV), the axial form factor $G_A(Q^2)$ of the proton can be measured in elastic scattering, that is inverse β -decay.
- The experiment does not require new technology but demands a welldesigned detector and very efficient background suppression techniques.

Form factors

- I. The proton charge radius r_E^p
- II. The proton electric form factor $G_E^p(Q^2)$
- III. The proton axial form factor $G_A^p(Q^2)$

Muti-photon exchange

- I. Two-Photon Exchange (TPE) effects in elastic scattering
- II. Coulomb corrections in DIS
- III. Mott polarimetry

Compton form factors

- I. Hadron dynamics
- II. Deeply Virtual Compton Scattering (DVCS)
- III. Double Deeply Virtual Compton Scattering (DDVCS)

Tests of the Standard Model

- I. Dark matter search
- II. Electroweak processes
- III. Other phenomena

The Dilemma

P.A.M. Guichon, M. Vanderhaeghen, PRL 91 (2003) 142303 P.G. Blunden, W. Melnitchouk, J.A. Tjon, PRL 91 (2003) 142304

o Measurements of **polarization transfer** observables in electron elastic scattering off protons question the validity of the 1γ exchange approximation (OPE) of the electromagnetic interaction.

Hard two-photon exchange (TPE) may be the cause of the form factor discrepancy at high Q^2 .

- If TPE, the electromagnetic structure of the nucleon would be parameterized by **3 generalized form factors** i.e. **8 unknow quantities**.
- TPE can only be calculated within model-dependent approaches.

Ce⁺BAF has the unique opportunity to bring a definitive answer about TPE.

TPE Mapping

J.C. Bernauer et al. EPJ A 57 (2021) 144 A. Schmidt, J.C. Bernauer, V. Burkert, E. Cline, I. Korover, T. Kutz, S.N. Santiesteban et al. PR12+23-008

- Alternating e and e⁺ at 2.2-4.4-6.6 GeV and an intensity of 50 nA, the TPE@CLAS12 experiment proposes to map-out TPE effects, detecting leptons in the Central Detector and **protons** in the Forward Detector.
- o The CLAS12 trigger will be modified to accept lepton detection in the Central Detector and elastic protons in the Forward Detector.

$$
R_{2\gamma} = \frac{\sigma_{e^+}}{\sigma_{e^-}} \approx 1 + \delta_{2\gamma}
$$

Super-Rosenbluth Slope

J.R. Arrington, M. Yurov EPJ A 57 (2021) 319

M. Nycz, J.R. Arrington, S.N. Santieseban, M. Yurov et al. PR12+23-012

- The direct comparison of the ε -slopes of the positron and electron elastic cross section doubles the sensitivity to a TPE signal.
- o The **positron** and electron average data cancels TPE effects and allow to test the existence of additional effects from the comparison to polarization transfer data expectations.
- \circ The Super-Rosenbluth technique will be used to measure the ε -dependence of the cross section.

Polarization Transfer

A.J.R. Puckett, J.C. Bernauer, A. Schmidt EPJ A 57 (2021) 188 A.J.R. Puckett, J.C. Bernauer, A. Schmidt et al. LOI12+23-008

- The theoretical evaluation that **polarization transfer** experiments are much less sensitive to TPE effects than cross section measurements must be confronted to experimental measurements.
- \circ Within the same detector configuration as the SBS GEP experiment and a longer LH₂ target (40 cm), the beam-to-proton polarization transfer in elastic scattering is proposed to be measured with a 2-4% precision (statistics limited) in the $2.5-3.4$ GeV² domain.

Coulomb Effects

D. Gaskell, N. Fomin, W. Henry et al. PR12+23-003

- o The comparison of **positron** and **electron cross sections** in the DIS regime provides unambiguous information about the size of Coulomb corrections.
- The double ratio of Au/D DIS cross sections **tests** the **prescriptions** of Coulomb corrections, of interest for the understanding of the EMC effect.

$$
R_C = \frac{\sigma_{Au}}{\sigma_D}\bigg|_{e^+} / \frac{\sigma_{Au}}{\sigma_D}\bigg|_{e^-} = 1 + \Delta_C
$$

e ⁺ Commissionning @ LERF D. Jakubaßa-Amundsen @ HP2030

- \circ Multi-Photon Exchange is responsible of the sensivity of the elastic $e^\pm A$ interaction to the transverse polarization of the incoming lepton beam, which is expressed in terms of the Sherman function.
- \circ It is the principle of operation of **Mott polarimetry (Mott polarimeter** at the **CEBAF injector)**.

The measurement of the angular distribution of the **Sherman function** with **polarized e -** and **e +** in **1-10 MeV** range is an opportunity for the commissionning of the Ce+BAF e⁻/e+ source at **LERF** and is of interest to **electron** and **positron polarimetry**.

Form factors

- I. The proton charge radius r_E^p
- II. The proton electric form factor $G_E^p(Q^2)$
- III. The proton axial form factor $G_A^p(Q^2)$

Muti-photon exchange

- I. Two-Photon Exchange (TPE) effects in elastic scattering
- II. Coulomb corrections in DIS
- III. Mott polarimetry

Compton form factors

- I. Hadron dynamics
- II. Deeply Virtual Compton Scattering (DVCS)
- III. Double Deeply Virtual Compton Scattering (DDVCS)

Tests of the Standard Model

- I. Dark matter search
- II. Electroweak processes
- III. Other phenomena

Gravitational Form Factors

V.D. Burkert, L. Elouadrhiri, F.-X. Girod, C. Lorcé, P.E. Shanahan RMP 95 (2023) 041002

- **Experimental access** to the Gravitational Form Factors (GFFs) of hadrons is the novel quest for understanding nucleon structure and dynamics.
- o GFFs may be **probed indirectly** in various exclusive processes: (Double) Deeply Virtual Compton Scattering, Time-Like Compton Scattering, Meson Production, J/Y production at threshold...

Experimental Access to D(t)

V.D. Burkert, L. Elouadrhiri, F.-X. Girod, Nature 557 (2018) 39

o The GFF D(t) can be accessed from the skewness dependence of the 2nd Mellin moment of the GPDs H and E which requires the GPDs knowledge over the whole physics phase space.

$$
\int_{-1}^{1} x H^{q}(x,\xi,t) dx = M_{2}^{q}(t) + \xi^{2} D^{q}(t) \qquad \int_{-1}^{1} x E^{q}(x,\xi,t) dx = 2 J^{q}(t) - M_{2}^{q}(t) - \xi^{2} D^{q}(t)
$$

GPDs are accessed in DVCS and DDVCS through Compton Form Factors (CFFs) which real and imaginary parts are related by a fixed-t dispersion relation

$$
\mathbf{\mathfrak{Re}}[\mathbf{\mathcal{H}}(\xi,t)] + i \mathbf{\mathfrak{Im}}[\mathbf{\mathcal{H}}(\xi,t)] = \sum_{q} e_q^2 \int_{-1}^1 \left[\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right] H^q(x,\xi,t) \, dx
$$

$$
\mathbf{\Re}\left[\mathbf{\mathcal{H}}(\xi,t)\right] \stackrel{\text{LO}}{=} \mathbf{\mathcal{C}}_{\mathbf{\mathcal{H}}}(t) + \mathcal{P}\left\{\int_{-1}^{1}\left[\frac{1}{\xi-x}-\frac{1}{\xi+x}\right]\mathbf{\Im}\left[\mathbf{\mathcal{H}}(x,t)\right]dx\right\}
$$

$$
C_{\mathcal{H}}(t) = 2 \sum_{q} e_q^2 \int_{-1}^1 \frac{D_{\text{term}}^q(z, t)}{1 - z} dz \qquad D_{\text{term}}^q(z, t) = (1 - z^2) \sum_{zn+1} d_n^q(t) C_n^{3/2}(z)
$$

Dynamical Imaging \\,D. Burkert @ HP2030 Y. Hatta @ HP2030

Measuring independently the real and imaginary parts of $\mathcal H$ provides access to D(t) and the mechanical properties of hadrons.

$$
r_{\rm mech.}^p = 0.634 \pm 0.057 \; \rm fm < \; r_E^p
$$

- Hadron stability suggests **D(0) < 0**, as found from DVCS data and theoretical models.

- A Skyrme modeling of nuclei predicts D(0) increases with the baryonic number as $\bm{D}_{\bm{B}}(\bm{0}) \propto \bm{B}^{1.7}$.

- Within the Skyrme model, the **pressure** is found **negative** at the center for all nucleus.

V.D. Burkert, L. Eloudrhiri, F.-X. Girod, Nature 557 (2018) 396 M.V. Polyakov, P. Schweitzer, IJMP A 33 (2018) 1830025 A.G. Martin-Caro, M. Huidobro, Y. Hatta PRD 108 (2023) 034014

 $\xi \cong x_B/(2-x_B)$

 Q^2 , x_B γ λ γ

GPDs

Interference Amplitude

A. Afanasev et al. EPJ A 57 (2021) 300 V.D. Burkert et al. EPJ A 57 (2021) 186

- o The **comparison** between **electron** and **positron**-induced photon production enables the separation of the 4 unknown amplitudes of the (e, ep_Y) process. $x-\xi$ **x** + ξ
	- Particularly it isolates the components of the DVCS⊗BH interference amplitude, providing a clean access to the real part of CFFs.

DVCS off neutrons

S. Niccolai et al. EPJ A 57 (2021) 226 H. Huang @ HP2030 S. Niccolai @ HP2030 L. Xu @ HP2030

○ The real part of the CFF \mathcal{I}_n , of importance for the Ji sum rule, the Gravitational Form Factors of the neutron, and for flavor separation is hardly constrained experimentally without **Beam Charge Asymmetry** data.

DVCS off Helium S. Fucini et al. EPJ A 57 (2021) 273 W. Cosyn @ HP2030 R. Dupré @ HP2030 M. Rinaldi @ HP2030

o The association of the ALERT recoil detector and the CLAS12 spectrometer together with high-energy electron and positron beams offer a new tool to investigate the nuclear force and a new path to study the EMC effect.

Double DVCS

M. Guidal, M. Vanderhaeghen, PRL 90 (2003) 012001 A.V. Belitsky, D. Müller PRL 90 (2003) 022001; PRD 68 (2003) 116005

o Because of the virtuality of the final photon, DDVCS allows a direct access to GPDs at $x \neq \pm \xi$, which is of importance for their modeling and for the investigation of nuclear dynamics.

$$
\mathcal{F}(\xi',\xi,t) = \mathcal{P}\int_{-1}^{1} dx F_{+}(x,\xi,t) \left[\frac{1}{x-\xi'}\pm\frac{1}{x+\xi'}\right] - i\pi F_{+}(\xi',\xi,t) \qquad F_{+}(x,\xi,t) = \sum_{q} \left(\frac{e_{q}}{e}\right)^{2} \left[F^{q}(x,\xi,t) \mp F^{q}(-x,\xi,t)\right]
$$

• Following the sign change of ζ around $Q'^2 = Q^2$, the CFF $\mathcal H$ and $\mathcal E$ change sign, providing a testing ground of **GPDs universality**.

DDVCS Detectors

A. Camsonne, M. Boer, E. Voutier, Z. Zhao et al. LOI12-15-005/LOI12-23-012 S. Stepanyan et al. LOI12-16-004

- o Two projects aim at measuring DDVCS on an unpolarized proton target either with a complemented SoLID or a transformed CLAS.
- o The CLAS is designed to support a luminosity of 10³⁷cm^{−2}.s^{−1} while the SoLID may be capable of 10 times higher luminosity.

Adding forward muon detection capabilities to SoLID. Transforming CLAS into a muon detector.

DDVCS Projections

S. Zhao et al. EPJ A 57 (2021) 240 K. Deja et al. PRD 107 (2023) 094035 J.S. Alvarado et al. @ HP2030 V. Martinez-Fernandez et al. @ HP2030 Z. Zhao @ HP2030

o Phase space and statistics projections have been worked out with the EpIC event generator assuming 100 days of beam at 10³⁷cm^{−2}.s^{−1} within the SoLID detector acceptance and considering some physics constraints.

Form factors

- I. The proton charge radius r_E^p
- II. The proton electric form factor $G_E^p(Q^2)$
- III. The proton axial form factor $G_A^p(Q^2)$

Muti-photon exchange

- I. Two-Photon Exchange (TPE) effects in elastic scattering
- II. Coulomb corrections in DIS
- III. Mott polarimetry

Compton form factors

- I. Hadron dynamics
- II. Deeply Virtual Compton Scattering (DVCS)
- III. Double Deeply Virtual Compton Scattering (DDVCS)

Tests of the Standard Model

- I. Dark matter search
- II. Electroweak processes
- III. Other phenomena

X17 Search @ PRad-II

A. Gasparian, D. Dutta, H. Gao, T. Hague, N. Liyanage R. Paremuzyan, C. Peng, et al. E12-21-003

 \circ Changing the interaction target for a 1 μ m Tatalum foil, the PRad-II detector will perform a search for a dark photon in the 3-60 MeV mass range in the e^+e^- and $\gamma\gamma$ visible decay channels.

Weak Charge

 \circ Measuring the weak mixing angle $sin^2(\theta_W)$ at low Q² procures a stringent test of the Standard Model probing the existence of BSM physics at a \sim 50 TeV mass scale, and also can constrain the existence of **dark matter** particles.

Electroweak Coupling @ Ce ⁺*BAF*

X. Zheng, J. Erler, Q. Liu, H. Spiesberger, EPJA 57 (2021) 5 X. Zheng et al. PR12-21-006 R. Trotta @ HP2030

 \circ Comparing unpolarized electron and positon DIS scatterings accesses the C_{3q} axial-axial neutral current coupling, and the $F^{\gamma Z}_3$ structure function.

Atoms as Accelerators

F. Arias_Aragon, L. Darmé, G. Grilli di Cortona, E. Nardi, arXiv:2407.15941

- The Hadronic Vacuum Polarization (HVP) is the leading theoretical uncertainty in the determination of $(g-2)_u$.
- Serious disagreements on σ_{had} exist among different experiments as well as between data driven and lattice QCD results for HVP.

Taking advantage of the relativistic motion of inner atomic shells electrons of high Z materials,

the $e^+e^-\to\pi^+\pi^-$ cross section can be measured at Ce $^\text{+}$ BAF

over a s-range of interest for the determination of $(g-2)_u$.

- A rich and diverse experimental program is developing at MAMI and CEBAF in nuclear, hadronic and particle physics.
- Exciting hours to come with the advent of new accelerator capabilities, tomorrow MESA and Ce⁺BAF in a near future.

It is ideal time for developing **collaborations** and preparing future with training a **new physicist generation**.

- A rich and diverse experimental program is developing at MAMI and CEBAF in nuclear, hadronic and particle physics.
- Exciting hours to come with the advent of new accelerator capabilities, tomorrow MESA and Ce⁺BAF in a near future.

It is ideal time for developing **collaborations** and preparing future with training a **new physicist generation**.

What about producing positrons at MESA and accelerating them with MAMI?