# Nuclear Reactions in Stars: A Personal Journey through Nuclear Astrophysics





School of Physics and Astronomy - University of Edinburgh, UK Scottish Universities Physics Alliance

Marialuisa Aliotta

CRC 1660 Kick-off Meeting – Mainz 9-10 December 2024



#### M. Aliotta

ACCELERATOR

#### Nuclear Astrophysics: A truly interdisciplinary field

BEAM-STOP

NUCLEAR

DETECTOR

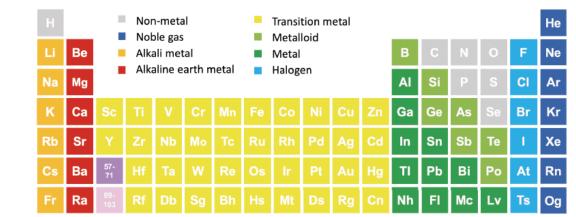
DATA-STORAGE



# **Nuclear Physics**

experimental and theoretical inputs stable and exotic nuclei

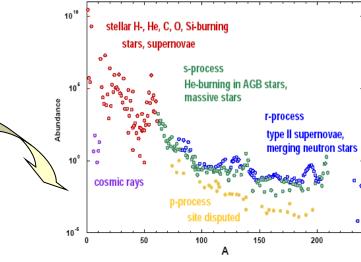
UADRUPOLE STEERER REAM PROFILE FARADAY


ELECTRON

DISPLAY

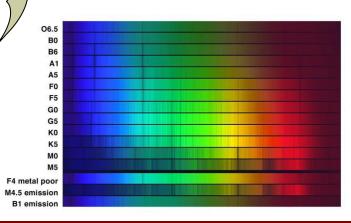
BEAM-TRANSPORT SYSTEM

# **Astrophysics**


stellar evolutionary codes nucleosynthesis calculations astronomical observations



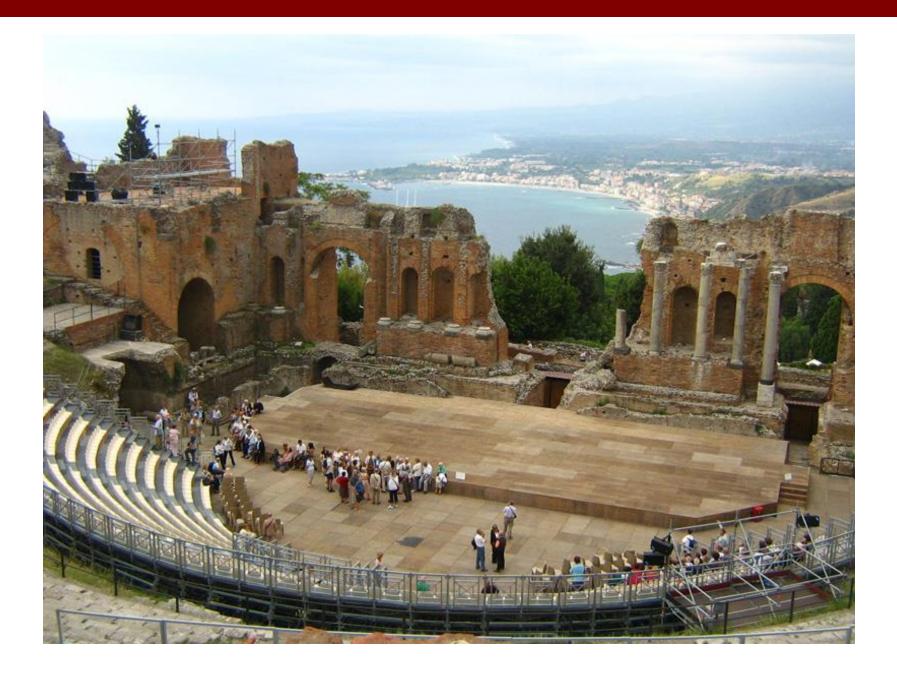



# **Atomic Physics**

radiation-matter interaction energy losses, stopping powers, spectral lines materials and detectors



# **Plasma Physics**


degenerate matter electron screening equation of state



#### M. Aliotta



# University of Catania (founded in 1434) one of the oldest in the world



# 1994-1995:

Postgraduate Fellowship Ruhr-Universität Bochum (Germany) Prof. Claus Rolfs



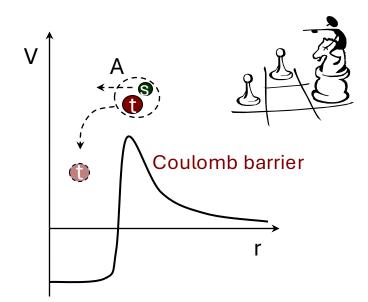
# 1996 – 1999: PhD at University of Catania (Italy)

# Laboratori Nazionali del Sud (INFN)





# PhD Project:


The quasi-free <sup>4</sup>He(<sup>12</sup>C,<sup>12</sup>C)<sup>4</sup>He scattering: A test measurement

Supervisor Prof Spitaleri

ASFIN Proposal: The  ${}^{12}C(\alpha,\gamma){}^{16}O$  with the THM

Baur (1986)

study a reaction of interest X(t,b)Y using a suitable three-body reaction: X(A,bs)Y with A = t + s



# X A

#### Advantages:

- reaction within nuclear field ('no' Coulomb, no screening)
- different projectile-target combinations possible

#### BUT...

- complex formalism and data analysis
- validity tests required

Eur. Phys. J. A 7, 181–187 (2000)

# ${}^{6}\text{Li}({}^{12}\text{C}, \alpha {}^{12}\text{C}){}^{2}\text{H} \Leftrightarrow {}^{4}\text{He}({}^{12}\text{C}, {}^{12}\text{C}){}^{4}\text{He}$




#### The lpha- $^{12}$ C scattering studied via the Trojan-Horse method

C. Spitaleri<sup>1,2,a</sup>, M. Aliotta<sup>1,2</sup>, P. Figuera<sup>1</sup>, M. Lattuada<sup>1,3</sup>, R.G. Pizzone<sup>1,2</sup>, S. Romano<sup>1</sup>, A. Tumino<sup>1,3</sup>, C. Rolfs<sup>4</sup>, L. Gialanella<sup>4</sup>, F. Strieder<sup>4</sup>, S. Cherubini<sup>5</sup>, A. Musumarra<sup>5</sup>, D. Miljanic<sup>6</sup>, S. Typel<sup>7</sup>, H.H. Wolter<sup>7</sup>

#### Experimental setup

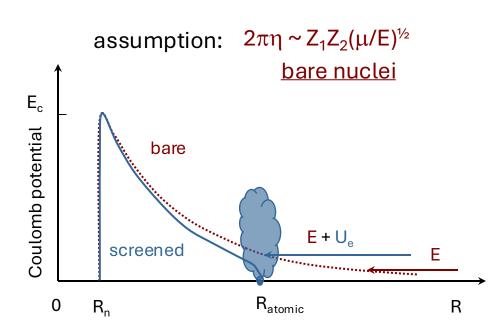




800 nn.) direct data (Ket82) 700 present measurement (arb.  $\Theta_{cm} = 120^{\circ}$ 600  $P_d = 0 - 10 \text{ MeV/c}$ do∕dΩ 500 400 300 200 100 O 2.5 2.75 3 3.25 3.5  $E_{cm}$  (MeV)

after much data analysis, checks and cross-checks...

#### cross section in good agreement with direct data


# 1999 – 2001:

# Alexander von Humboldt Fellowship Ruhr-Universität Bochum (Germany)



# **Electron Screening**

 $\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$ 



in the lab and in stellar plasmas interaction affected by electrons

# $f_{lab}(E) = \frac{S_{screen}(E)}{S_{bare}(E)} \sim exp(\pi \eta U_e/E)$ $S(E) \int screened S(E) \int fit to measured low-energy data low-energy data bare S(E) high-energy data extrapolation extrapolation to the strapolation to the strapolat$

experimental  $U_e$  values in excess of theoretical limit !

#### SCREENING POTENTIAL $\mathrm{U_{e}}$

corrections typically negligible, except at ultra-low energies

#### ELECTRON SCREENING PUZZLE

M Aliotta

#### **Electron Screening**



<sup>3</sup>He(d,p)<sup>4</sup>He

bare

Nuclear Physics A 690 (2001) 790-800

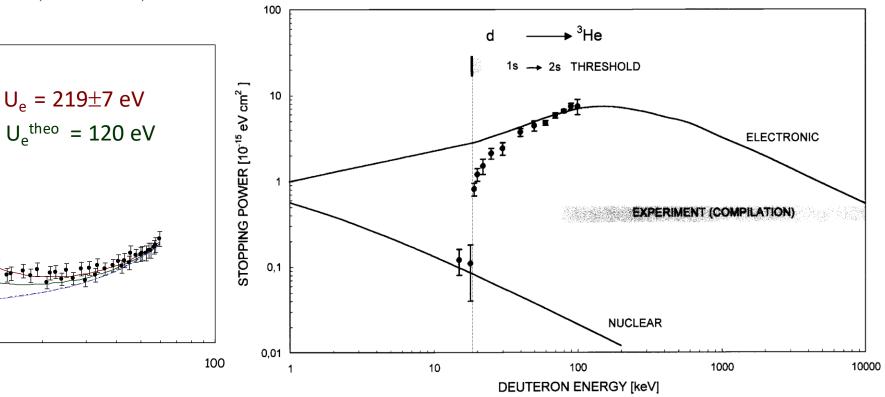
Electron screening effect in the reactions

<sup>3</sup>He(d,p)<sup>4</sup>He and d(<sup>3</sup>He,p)<sup>4</sup>He  $\stackrel{\star}{\sim}$ 

M. Aliotta <sup>a,1</sup>, F. Raiola <sup>a</sup>, G. Gyürky <sup>b</sup>, A. Formicola <sup>a</sup>, R. Bonetti <sup>c</sup>, C. Broggini <sup>d</sup>, L. Campajola <sup>e</sup>, P. Corvisiero <sup>f</sup>, H. Costantini <sup>f</sup>,
A. D'Onofrio <sup>g</sup>, Z. Fülöp <sup>b</sup>, G. Gervino <sup>h</sup>, L. Gialanella <sup>e</sup>, A. Guglielmetti <sup>c</sup>,
C. Gustavino <sup>i</sup>, G. Imbriani <sup>e,j</sup>, M. Junker <sup>i</sup>, P.G. Moroni <sup>f</sup>, A. Ordine <sup>e</sup>,
P. Prati <sup>f</sup>, V. Roca <sup>e</sup>, D. Rogalla <sup>a</sup>, C. Rolfs <sup>a</sup>, M. Romano <sup>e</sup>, F. Schümann <sup>a</sup>,
E. Somorjai <sup>b</sup>, O. Straniero <sup>k</sup>, F. Strieder <sup>a</sup>, F. Terrasi <sup>g</sup>, H.P. Trautvetter <sup>a</sup>,
S. Zavatarelli <sup>f</sup>

10

E [keV]


Eur. Phys. J. A 8, 443–446 (2000)

THE EUROPEAN PHYSICAL JOURNAL A © Società Italiana di Fisica Springer-Verlag 2000

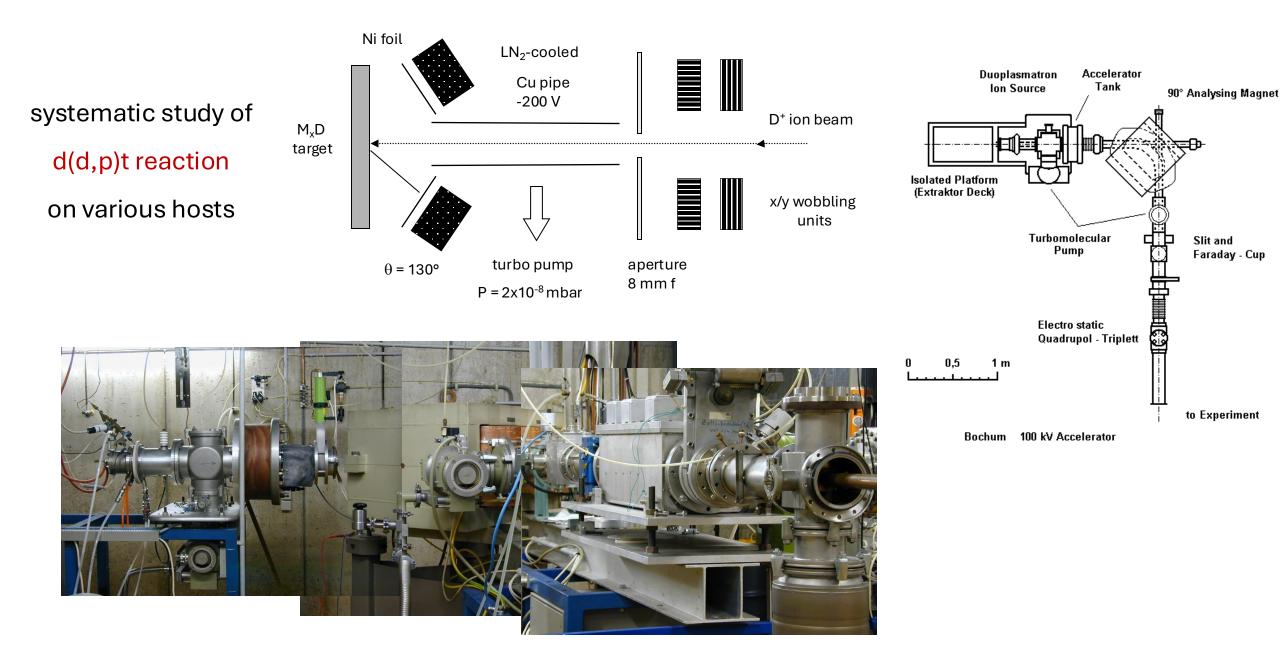
#### Short note

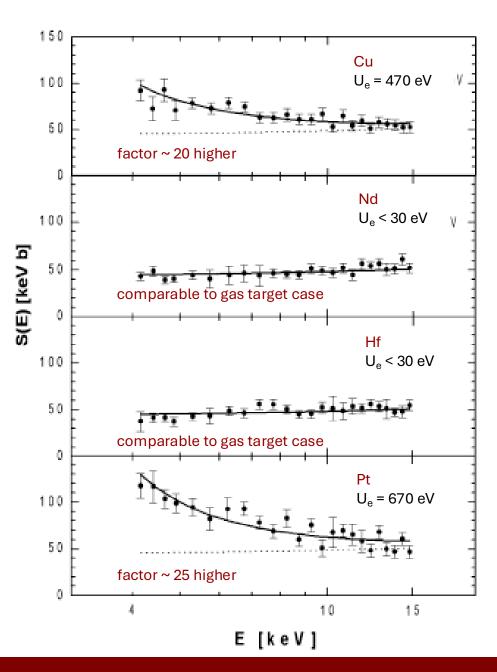
#### Energy loss of deuterons in <sup>3</sup>He gas: a threshold effect

A. Formicola<sup>1</sup>, M. Aliotta<sup>1,a</sup>, G. Gyürky<sup>2</sup>, F. Raiola<sup>1</sup>, R. Bonetti<sup>3</sup>, C. Broggini<sup>4</sup>, L. Campajola<sup>5</sup>, P. Corvisiero<sup>6</sup>, H. Costantini<sup>6</sup>, A. D'Onofrio<sup>7</sup>, Z. Fülöp<sup>2</sup>, G. Gervino<sup>8</sup>, L. Gialanella<sup>5</sup>, A. Guglielmetti<sup>3</sup>, C. Gustavino<sup>9</sup>, G. Imbriani<sup>5,10</sup>, M. Junker<sup>9</sup>, A. Ordine<sup>5</sup>, P. Prati<sup>6</sup>, V. Roca<sup>5</sup>, D. Rogalla<sup>1</sup>, C. Rolfs<sup>1,b</sup>, M. Romano<sup>5</sup>, F. Schümann<sup>1</sup>, E. Somorjai<sup>2</sup>, O. Straniero<sup>11</sup>, F. Strieder<sup>1</sup>, F. Terrasi<sup>7</sup>, H.P. Trautvetter<sup>1</sup>, and S. Zavatarelli<sup>6</sup>



14


13


12

7

6

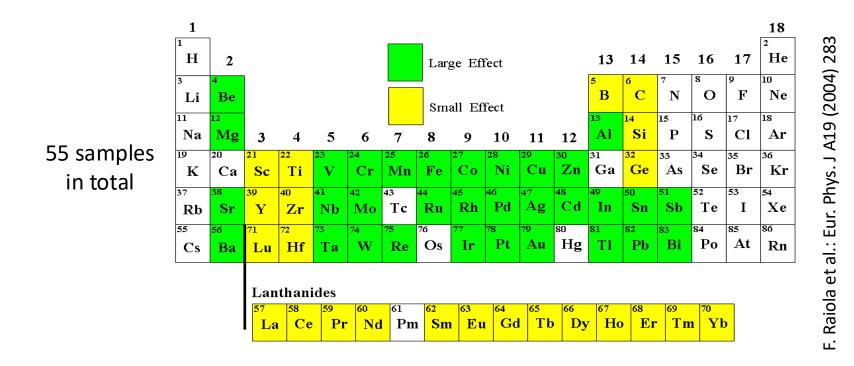
5





Eur. Phys. J. A 19, 283–287 (2004) DOI 10.1140/epja/i2003-10125-0

THE EUROPEAN PHYSICAL JOURNAL A


#### Enhanced electron screening in d(d,p)t for deuterated metals<sup>\*</sup>

F. Raiola<sup>1</sup>, L. Gang<sup>1,2</sup>, C. Bonomo<sup>1</sup>, G. Gyürky<sup>3</sup>, M. Aliotta<sup>4</sup>, H.W. Becker<sup>1</sup>, R. Bonetti<sup>5</sup>, C. Broggini<sup>6</sup>, P. Corvisiero<sup>8</sup>, A. D'Onofrio<sup>9</sup>, Z. Fülöp<sup>3</sup>, G. Gervino<sup>11</sup>, L. Gialanella<sup>7</sup>, M. Junker<sup>10</sup>, P. Prati<sup>8</sup>, V. Roca<sup>7</sup>, C. Rolfs<sup>1,a</sup>, M. Romano<sup>7</sup>, E. Somorjai<sup>3</sup>, F. Strieder<sup>1</sup>, F. Terrasi<sup>9</sup>, G. Fiorentini<sup>12</sup>, K. Langanke<sup>13</sup>, and J. Winter<sup>14</sup>

compared to screening in gas  $D_2$  target ( $U_e \cong 30 \text{ eV}$ ) anomalous enhancements observed for

some materials but not for others





#### Key Results:

M Aliotta

- elements in same group show similar U<sub>e</sub> values
  - large effect ~ 300 eV
  - small effect ~ 30 eV
- exceptions: group 13 (B = metalloid) and group 14 (C, Si, Ge = semiconductors)

2001: Lectureship at the University of Edinburgh

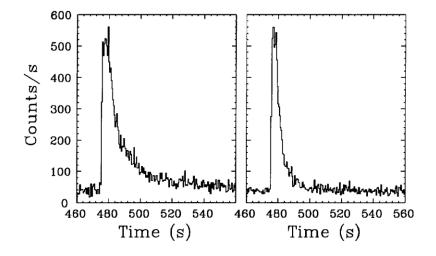
2008: Senior Lecturer

2013: Reader

2016: Full Professor

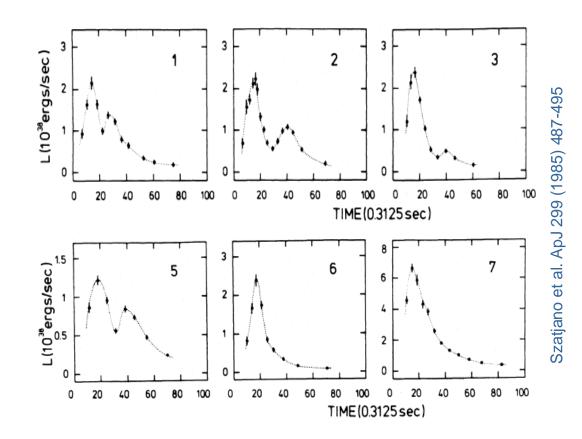
2021 – present: Head of Nuclear Physics Group





School of Physics and Astronomy James Clerk Maxwell Building



# Nuclear Astrophysics with Radioactive Ion Beams


# thermonuclear explosion in binary systems with neutron star + LEC





some Type I X-ray bursts show double peak in luminosity

separated by a few seconds



origin of double-peak structures unclear

THE ASTROPHYSICAL JOURNAL, 608:L61-L64, 2004 June 10 © 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.

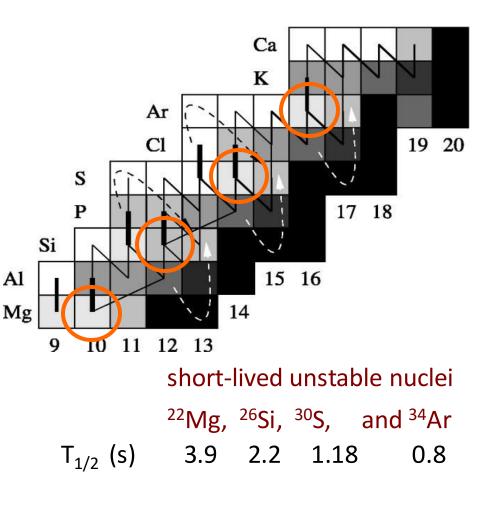
# THE NUCLEAR REACTION WAITING POINTS: <sup>22</sup>Mg, <sup>26</sup>Si, <sup>30</sup>S, AND <sup>34</sup>Ar AND BOLOMETRICALLY DOUBLE-PEAKED TYPE I X-RAY BURSTS

JACOB LUND FISKER AND FRIEDRICH-KARL THIELEMANN Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland; jfisker@nd.edu, fkt@quasar.physik.unibas.ch

AND

MICHAEL WIESCHER Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556; michael.c.wiescher.1@nd.edu Received 2004 January 29; accepted 2004 April 28; published 2004 May 7

possible cause: waiting points in thermonuclear reaction flow ?

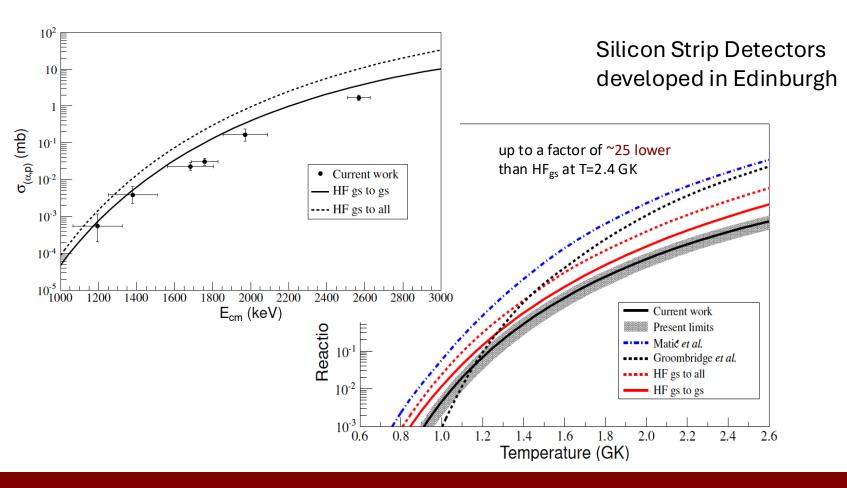

waiting points: <sup>22</sup>Mg, <sup>26</sup>Si, <sup>30</sup>S, and <sup>34</sup>Ar?

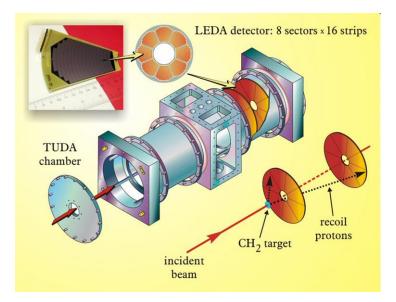
(p, $\gamma$ )-reaction quenched by photodisintegration ( $\alpha$ ,p) reactions too weak because of Coulomb barrier

However: no relevant RIBs available at that time...

<sup>18</sup>Ne( $\alpha$ ,p)<sup>21</sup>Na breakout from HCNO cycle

by time reversal approach: <sup>21</sup>Na(p, $\alpha$ )<sup>18</sup>Ne as proof of principle for further ( $\alpha$ ,p) reactions



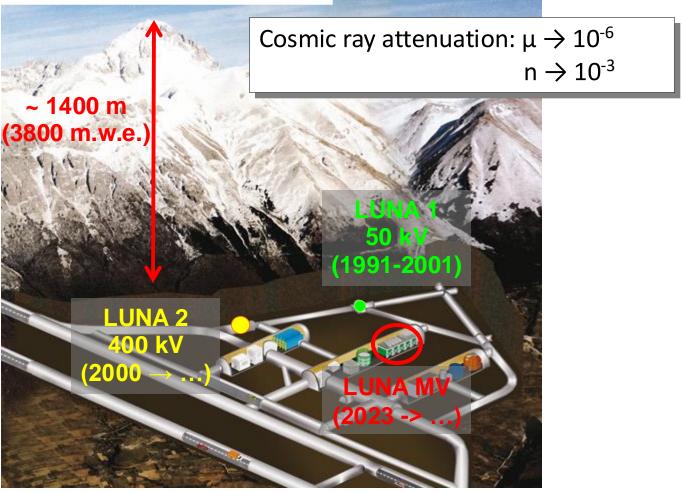






#### Measurement of the <sup>18</sup>Ne( $\alpha$ , $p_0$ )<sup>21</sup>Na Reaction Cross Section in the Burning Energy Region for X-Ray Bursts

P. J. C. Salter,<sup>1</sup> M. Aliotta,<sup>1,\*</sup> T. Davinson,<sup>1</sup> H. Al Falou,<sup>2</sup> A. Chen,<sup>2</sup> B. Davids,<sup>2</sup> B. R. Fulton,<sup>3</sup> N. Galinski,<sup>2,4</sup> D. Howell,<sup>2,4</sup> G. Lotay,<sup>1</sup> P. Machule,<sup>2</sup> A. StJ. Murphy,<sup>1</sup> C. Ruiz,<sup>2</sup> S. Sjue,<sup>2</sup> M. Taggart,<sup>3</sup> P. Walden,<sup>2</sup> and P. J. Woods<sup>1</sup>






# Nuclear Astrophysics with Stable Beams Underground

LUNA: Laboratory for Underground Nuclear Astrophysics (established early 1990s)



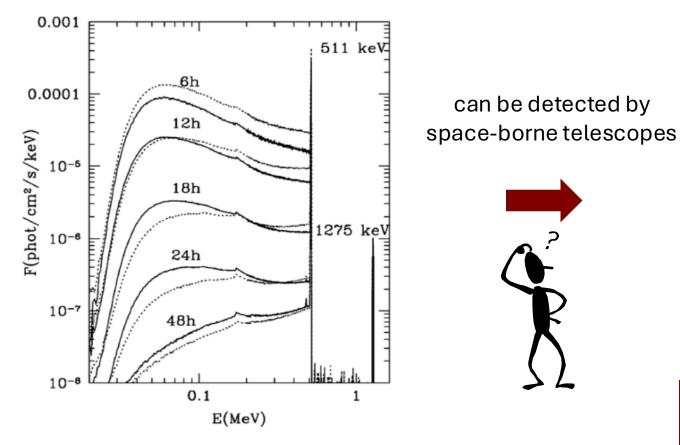
## Laboratori Nazionali del Gran Sasso, INFN



# 30 years of Nuclear Astrophysics at LUNA (LNGS, INFN)

solar fusion reactions

 $^{3}$ He( $^{3}$ He,2p) $^{4}$ He  $^{2}$ H(p, $\gamma$ ) $^{3}$ He  $^{3}$ He( $\alpha$ , $\gamma$ ) $^{7}$ Be


- electron screening and stopping power <sup>2</sup>H(<sup>3</sup>He,p)<sup>4</sup>He <sup>3</sup>He(<sup>2</sup>H,p)<sup>4</sup>He
- CNO, Ne-Na and Mg-Al cycles
   <sup>12,13</sup>C(p,γ)<sup>13,14</sup>N
   <sup>14,15</sup>N(p,γ)<sup>15,16</sup>O
   <sup>16</sup>O(p,γ)<sup>17</sup>F
   <sup>20,21,22</sup>Ne(p,γ)<sup>21,22,23</sup>Na
   <sup>22</sup>Ne(α,γ)<sup>26</sup>Mg
   <sup>23</sup>Na(p,γ)<sup>24</sup>Mg
   <sup>25</sup>Mg(p,γ)<sup>26</sup>Al
- (explosive) hydrogen burning in novae and AGB stars  ${}^{17}O(p,\gamma){}^{18}F$   ${}^{17}O(p,\alpha){}^{14}N$   ${}^{18}O(p,\gamma){}^{19}F$   ${}^{18}O(p,\alpha){}^{15}N$
- Big Bang nucleosynthesis  ${}^{2}H(\alpha,\gamma){}^{6}Li$   ${}^{2}H(p,\gamma){}^{3}He$   ${}^{6}Li(p,\gamma){}^{7}Be$
- neutron capture nucleosynthesis
   <sup>13</sup>C(α,n)<sup>16</sup>O

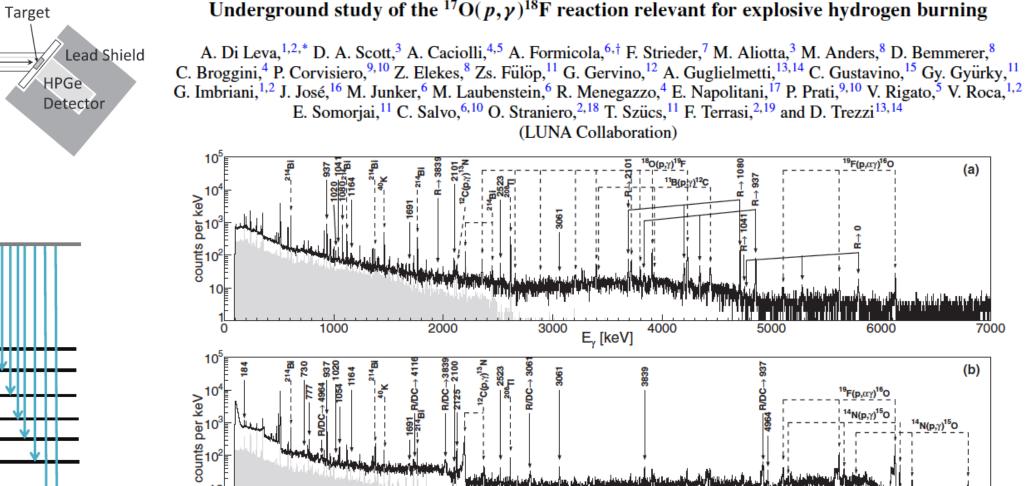
some of the lowest cross sections ever measured (few counts/month)

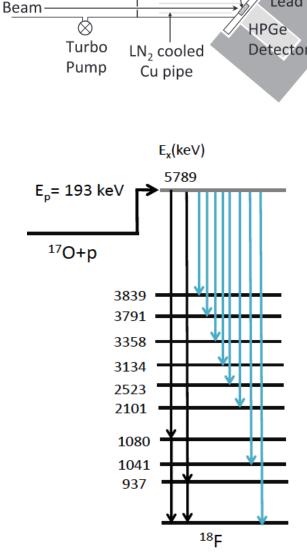
# The ${}^{17}O(p,\gamma){}^{18}F$ Reaction in Classical Novae

annihilation radiation (511 keV gamma rays) from  $\beta^+$  decay of <sup>18</sup>F (t<sub>1/2</sub> ~ 110 mins)

can provide constraints on novae nucleosynthesis







no 511 keV radiation observed to date! uncertain  ${}^{17}O(p,\gamma){}^{18}F$  rate? David Scott's PhD project



#### PHYSICAL REVIEW C 89, 015803 (2014)

r





10

0

1000

2000

Collimator

FIG. 5. (a) Sample spectrum of an on-resonance measurement at energy  $E_{c.m.} = 183 \text{ keV}$ . (b) Sample spectrum for an off-resonance measurement at  $E_{c.m.} = 250 \text{ keV}$ . In gray is the time-normalized room background with 10 cm of lead surrounding the detector.

E, [keV]

4000

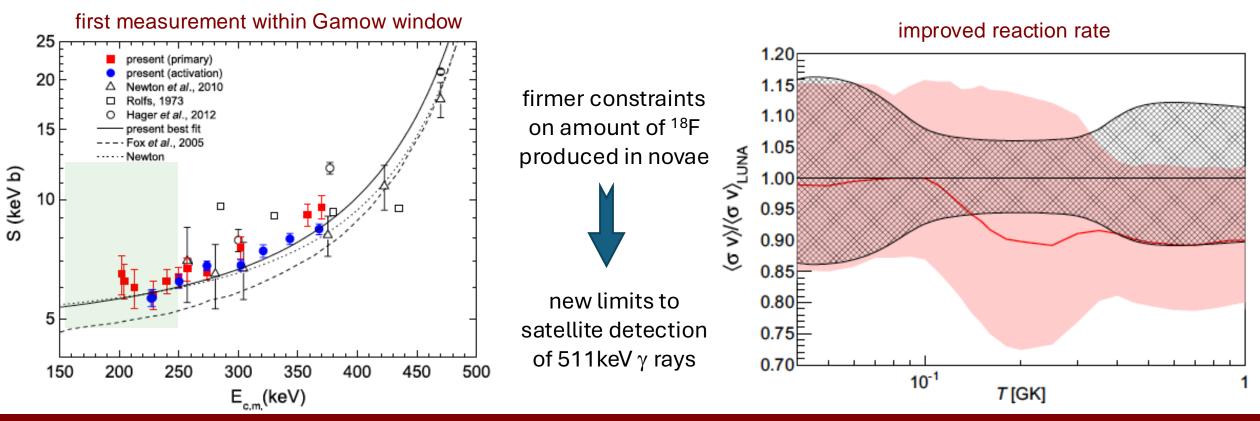
5000

6000

7000

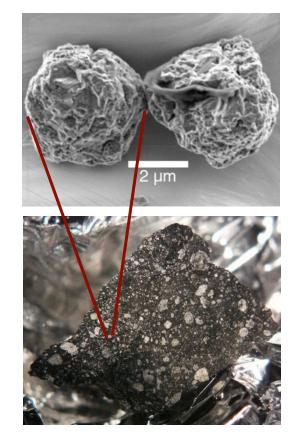
3000

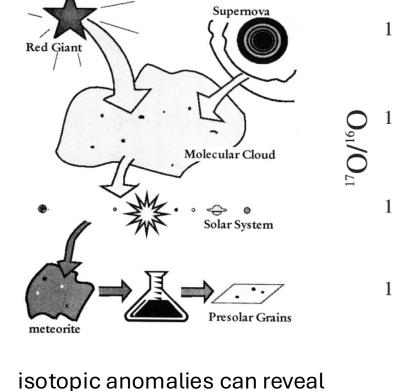
PRL 109, 202501 (2012)


#### PHYSICAL REVIEW LETTERS

#### week ending 16 NOVEMBER 2012

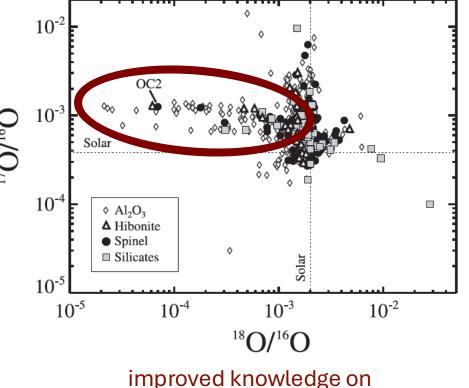
# First Direct Measurement of the ${}^{17}O(p, \gamma){}^{18}F$ Reaction Cross Section at Gamow Energies for Classical Novae


D. A. Scott,<sup>1</sup> A. Caciolli,<sup>2,3</sup> A. Di Leva,<sup>4</sup> A. Formicola,<sup>5,\*</sup> M. Aliotta,<sup>1</sup> M. Anders,<sup>6</sup> D. Bemmerer,<sup>6</sup> C. Broggini,<sup>2</sup> M. Campeggio,<sup>7</sup> P. Corvisiero,<sup>8</sup> Z. Elekes,<sup>6</sup> Zs. Fülöp,<sup>9</sup> G. Gervino,<sup>10</sup> A. Guglielmetti,<sup>7</sup> C. Gustavino,<sup>5</sup> Gy. Gyürky,<sup>9</sup> G. Imbriani,<sup>4</sup> M. Junker,<sup>5</sup> M. Laubenstein,<sup>5</sup> R. Menegazzo,<sup>2</sup> M. Marta,<sup>11</sup> E. Napolitani,<sup>12</sup> P. Prati,<sup>8</sup> V. Rigato,<sup>3</sup> V. Roca,<sup>4</sup> E. Somorjai,<sup>9</sup> C. Salvo,<sup>5,8</sup> O. Straniero,<sup>14</sup> F. Strieder,<sup>13</sup> T. Szücs,<sup>9</sup> F. Terrasi,<sup>15</sup> and D. Trezzi<sup>16</sup>


#### (LUNA Collaboration)






## Pre-solar grains: stellar dust trapped in meteorites

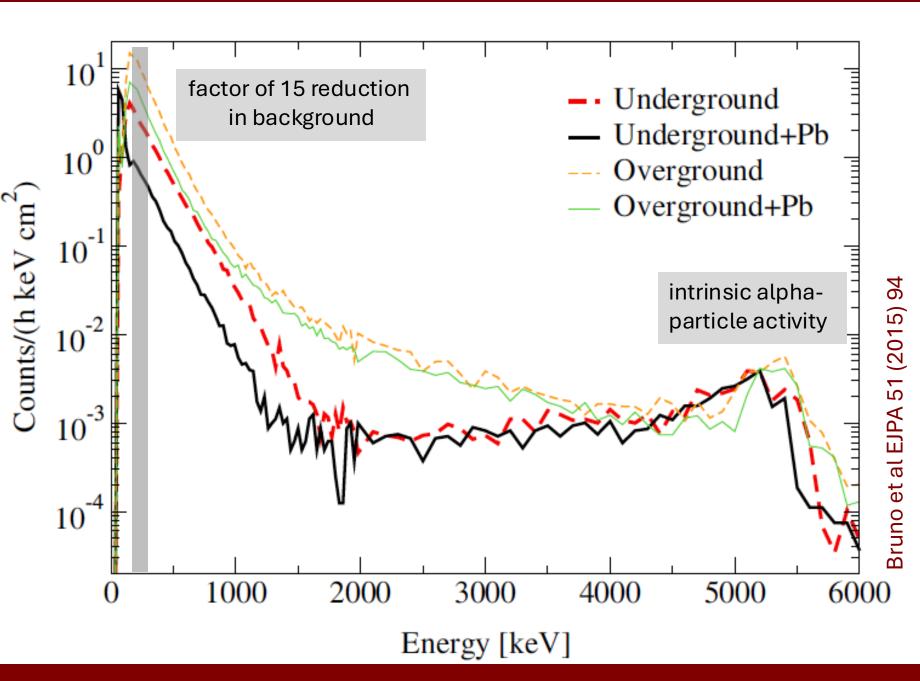




clues on site of formation

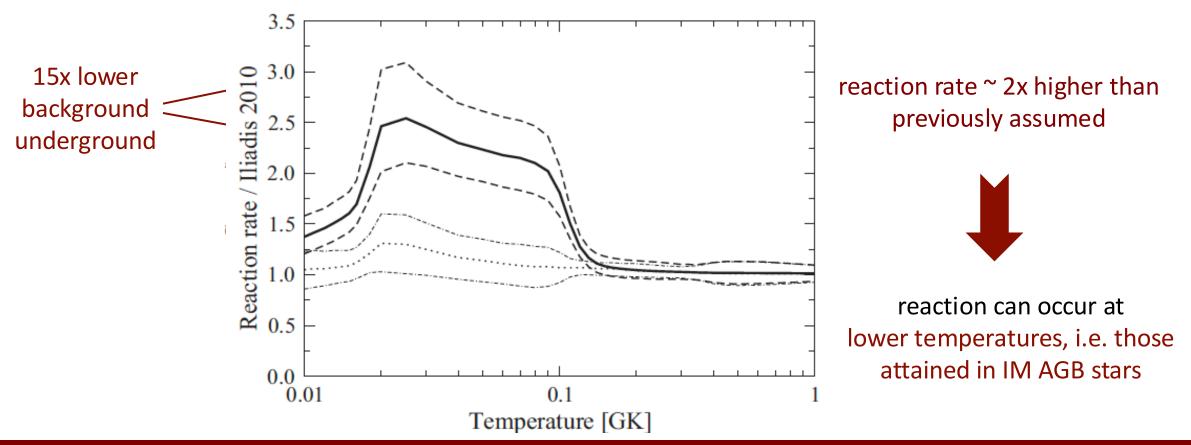
#### puzzling origin of Oxygen-rich grains




 $^{17}O(p,\alpha)^{14}N$  reaction needed

#### Carlo Bruno's PhD project

M. Aliotta


#### Edinburgh





#### Improved Direct Measurement of the 64.5 keV Resonance Strength in the ${}^{17}O(p,\alpha){}^{14}N$ Reaction at LUNA

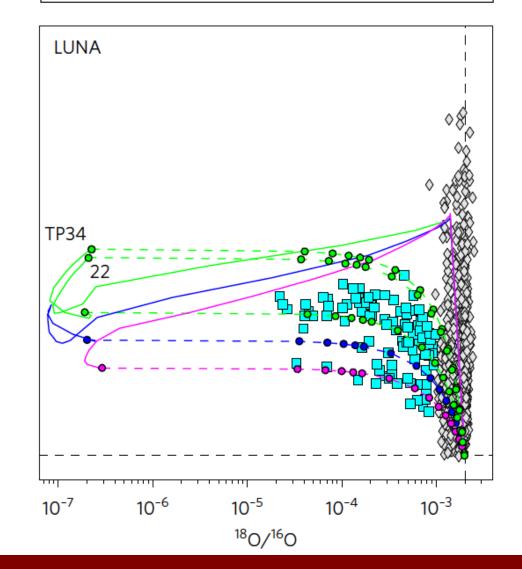
C. G. Bruno,<sup>1,\*</sup> D. A. Scott,<sup>1</sup> M. Aliotta,<sup>1,†</sup> A. Formicola,<sup>2</sup> A. Best,<sup>3</sup> A. Boeltzig,<sup>4</sup> D. Bemmerer,<sup>5</sup> C. Broggini,<sup>6</sup> A. Caciolli,<sup>7</sup> F. Cavanna,<sup>8</sup> G. F. Ciani,<sup>4</sup> P. Corvisiero,<sup>8</sup> T. Davinson,<sup>1</sup> R. Depalo,<sup>7</sup> A. Di Leva,<sup>3</sup> Z. Elekes,<sup>9</sup> F. Ferraro,<sup>8</sup> Zs. Fülöp,<sup>9</sup> G. Gervino,<sup>10</sup> A. Guglielmetti,<sup>11</sup> C. Gustavino,<sup>12</sup> Gy. Gyürky,<sup>9</sup> G. Imbriani,<sup>3</sup> M. Junker,<sup>2</sup> R. Menegazzo,<sup>6</sup> V. Mossa,<sup>13</sup> F. R. Pantaleo,<sup>13</sup> D. Piatti,<sup>7</sup> P. Prati,<sup>8</sup> E. Somorjai,<sup>9</sup> O. Straniero,<sup>14</sup> F. Strieder,<sup>15</sup> T. Szücs,<sup>5</sup> M. P. Takács,<sup>5</sup> and D. Trezzi<sup>11</sup>



nature astronomy

PUBLISHED: 30 JANUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 002

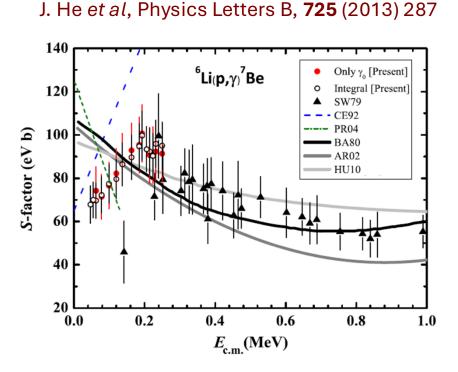
LETTERS

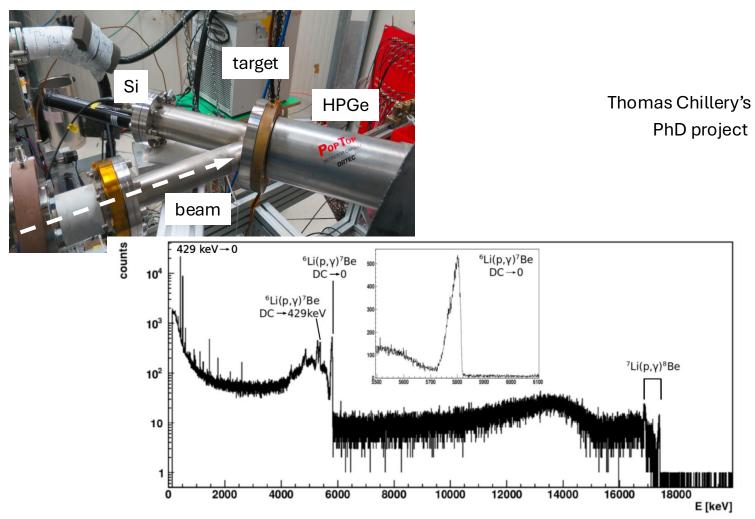

# Origin of meteoritic stardust unveiled by a revised proton-capture rate of <sup>17</sup>O

M. Lugaro<sup>1,2\*</sup>, A. I. Karakas<sup>2-4</sup>, C. G. Bruno<sup>5</sup>, M. Aliotta<sup>5</sup>, L. R. Nittler<sup>6</sup>, D. Bemmerer<sup>7</sup>, A. Best<sup>8</sup>, A. Boeltzig<sup>9</sup>, C. Broggini<sup>10</sup>, A. Caciolli<sup>11</sup>, F. Cavanna<sup>12</sup>, G. F. Ciani<sup>9</sup>, P. Corvisiero<sup>12</sup>, T. Davinson<sup>5</sup>, R. Depalo<sup>11</sup>, A. Di Leva<sup>8</sup>, Z. Elekes<sup>13</sup>, F. Ferraro<sup>12</sup>, A. Formicola<sup>14</sup>, Zs. Fülöp<sup>13</sup>, G. Gervino<sup>15</sup>, A. Guglielmetti<sup>16</sup>, C. Gustavino<sup>17</sup>, Gy. Gyürky<sup>13</sup>, G. Imbriani<sup>8</sup>, M. Junker<sup>14</sup>, R. Menegazzo<sup>10</sup>, V. Mossa<sup>18</sup>, F. R. Pantaleo<sup>18</sup>, D. Piatti<sup>11</sup>, P. Prati<sup>12</sup>, D. A. Scott<sup>5,†</sup>, O. Straniero<sup>14,19</sup>, F. Strieder<sup>20</sup>, T. Szücs<sup>13</sup>, M. P. Takács<sup>7</sup> and D. Trezzi<sup>16</sup>

new LUNA rate allows to reproduce correct abundances

confirms intermediate mass AGB as likely site of production


for oxygen-rich pre-solar grains




# $^{6}Li$ destruction: The $^{6}Li(p,\gamma)^{7}Be$ and $^{6}Li(p,\alpha)^{3}He$ Reactions



<sup>6</sup>Li(p, $\gamma$ )<sup>7</sup>Be reaction involved in BBN as well as in <sup>6</sup>Li depletion in early stages of stellar evolution





resonance(-like) structure reported but never independently confirmed

0

0

#### PHYSICAL REVIEW C 102, 052802(R) (2020)

#### Rapid Communications

# Underground experimental study finds no evidence of low-energy resonance in the ${}^{6}\text{Li}(p, \gamma) {}^{7}\text{Be reaction}$

D. Piatti,<sup>1</sup> T. Chillery,<sup>2</sup> R. Depalo<sup>1,\*</sup> M. Aliotta,<sup>2</sup> D. Bemmerer,<sup>3</sup> A. Best,<sup>4</sup> A. Boeltzig,<sup>5</sup> C. Broggini,<sup>6</sup> C. G. Bruno,<sup>2</sup> A. Caciolli,<sup>1</sup> F. Cavanna,<sup>7</sup> G. F. Ciani,<sup>5</sup> P. Corvisiero,<sup>7</sup> L. Csedreki,<sup>5</sup> T. Davinson,<sup>2</sup> A. Di Leva,<sup>4</sup> Z. Elekes,<sup>8</sup> F. Ferraro,<sup>7</sup> E. M. Fiore,<sup>9</sup> A. Formicola,<sup>10</sup> Zs. Fülöp,<sup>8</sup> G. Gervino,<sup>11</sup> A. Gnech,<sup>12</sup> A. Guglielmetti,<sup>13</sup> C. Gustavino,<sup>14</sup> Gy. Gyürky,<sup>8</sup> G. Imbriani,<sup>4</sup> M. Junker,<sup>10</sup> I. Kochanek,<sup>10</sup> M. Lugaro,<sup>15</sup> L. E. Marcucci,<sup>16</sup> P. Marigo,<sup>17</sup> E. Masha,<sup>13</sup> R. Menegazzo,<sup>6</sup> V. Mossa,<sup>9</sup> F. R. Pantaleo,<sup>9</sup> V. Paticchio,<sup>18</sup> R. Perrino,<sup>18</sup> P. Prati,<sup>7</sup> L. Schiavulli,<sup>9</sup> K. Stöckel,<sup>19</sup> O. Straniero,<sup>20</sup> T. Szücs,3 M. P. Takács,19 and S. Zavatarelli7 (LUNA Collaboration) 120 100 ruled out <sup>80</sup> <sup>80</sup> <sup>60</sup> <sup>60</sup> <sup>60</sup> <sup>60</sup> <sup>40</sup> previously suggested resonance Switkowski et al. 1979 Xu et al. 2013 Dong et al. 2017 Cecil et al. 1992 Prior et al. 2004 Gnech et al. 2019 20 R-matrix fit He et al. 2013 Present Work

0.3

E [MeV]

0.4

0.5

0.6

0.2

0.1

# Plans for the Future...

# NUclear CLustering Effects in Astrophysical Reactions

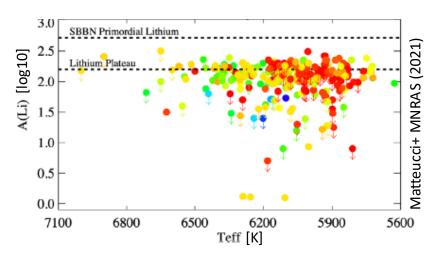
# NUCLEAR

# Nucleosynthesis in First Stars and Other Puzzles





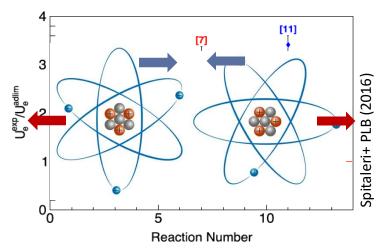
European Research Council Established by the European Commission


erc



UK Research and Innovation




#### Q1. Cosmological Lithium Problem



#### **Q2.** Nucleosynthesis in First Stars



#### **Q3. Electron Screening Puzzle**

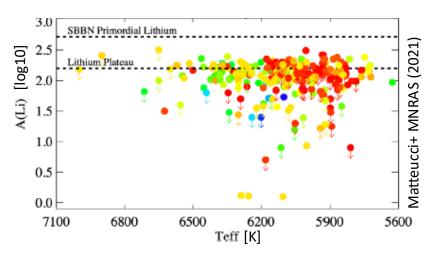


factor of 3 discrepancy between observed and predicted Li abundance

made of pristine H and He very massive  $\rightarrow$  need CNO nuclei

discrepancy between experiment and theory remains unexplained

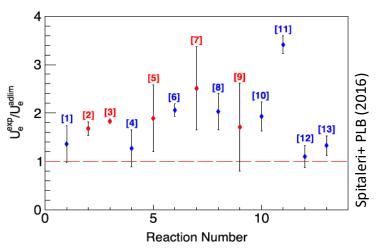
Standard Model of Particle Physics + Cosmology


Chemical Evolution of Early Universe

+ Astronomical Observations (JWST)


Reactions in Plasmas Fusion-driven Energy Generation




#### Q1. Cosmological Lithium Problem



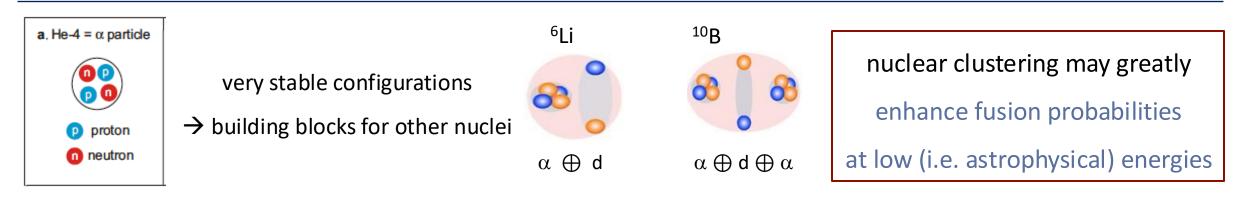
#### Q2. Nucleosynthesis in First Stars



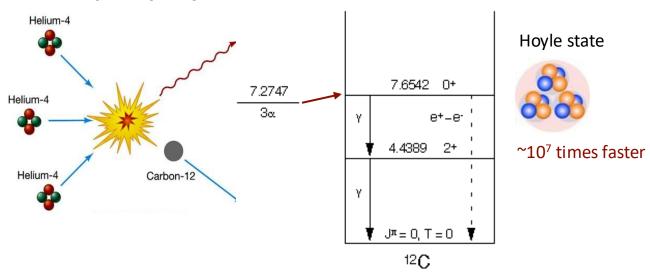
#### **Q3. Electron Screening Puzzle**

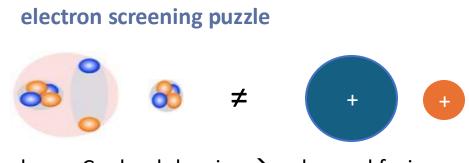


factor of 3 discrepancy between observed and predicted Li abundance made of pristine H and He very massive  $\rightarrow$  need CNO nuclei


discrepancy between experiment and theory remains unexplained




key to unlock all three puzzles


# **Nuclear Clustering**





triple alpha process





lower Coulomb barrier  $\rightarrow$  enhanced fusion

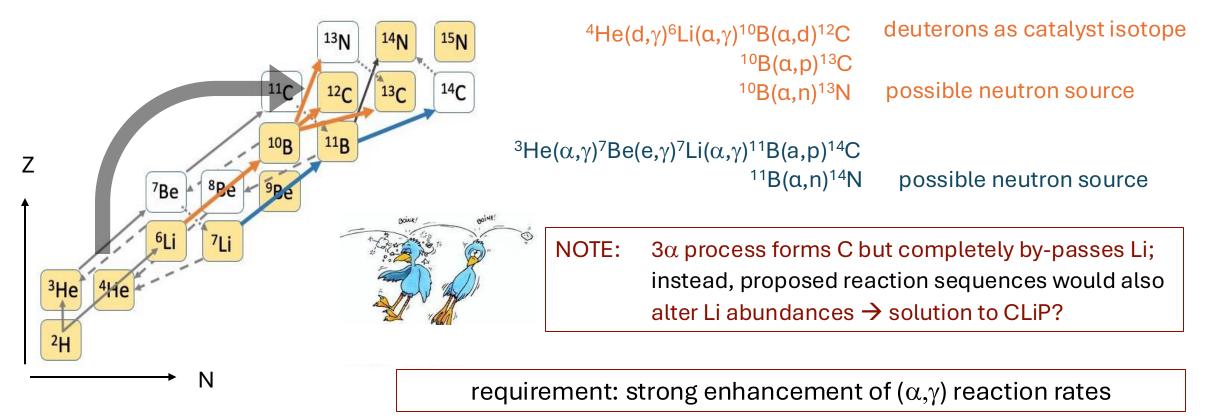
#### M Aliotta

#### Nuclear Clustering: A Possible Solution?

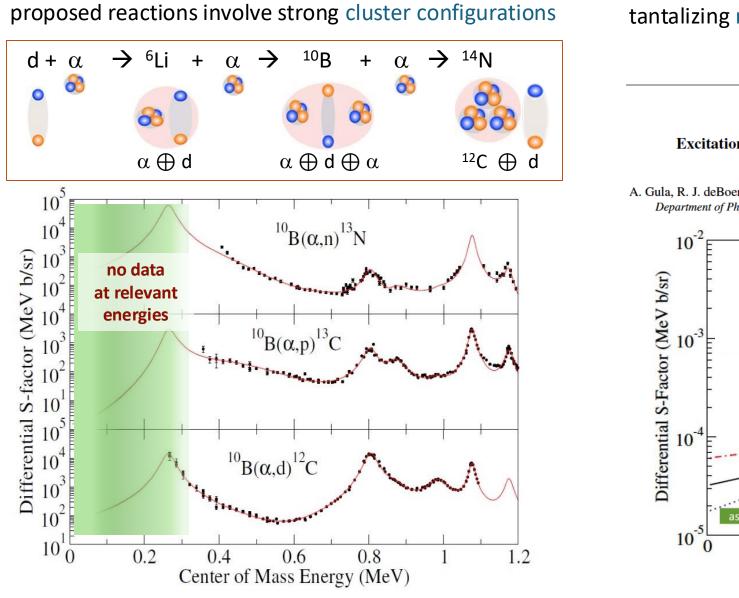
Eur. Phys. J. A (2021) 57:24 https://doi.org/10.1140/epja/s10050-020-00339-x

THE EUROPEAN **PHYSICAL JOURNAL A** 




**Regular Article - Theoretical Physics** 

#### Nuclear clusters as the first stepping stones for the chemical evolution of the universe

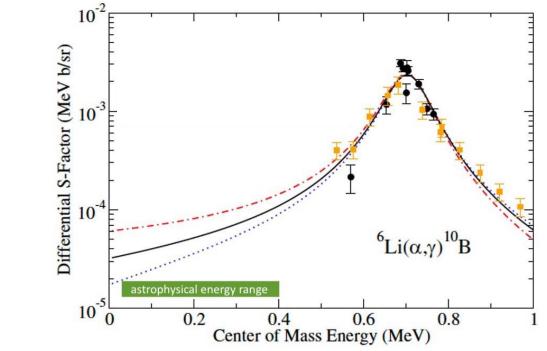

Michael Wiescher<sup>1,a</sup>, Ondrea Clarkson<sup>2</sup>, Richard J. deBoer<sup>1</sup>, Pavel Denisenkov<sup>2</sup>

<sup>1</sup> Department of Physics, The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA <sup>2</sup> Department of Physics & Astronomy, University of Victoria, Victoria, BC V8W 2Y2, Canada



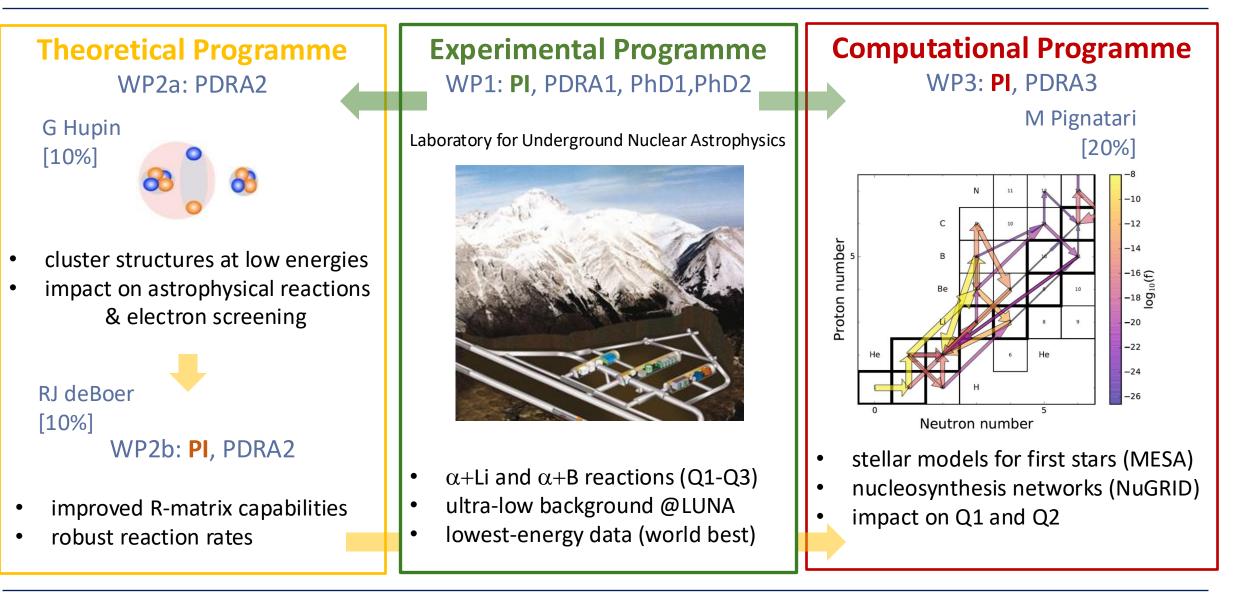


#### Current Status




#### tantalizing new evidence for broad cluster resonances

PHYSICAL REVIEW C 106, 065801 (2022)


#### Excitation function for the ${}^{6}Li + \alpha$ reaction between 0.5 and 1.4 MeV

A. Gula, R. J. deBoer<sup>10</sup>, R. Kelmar<sup>10</sup>, J. Görres, K. V. Manukyan<sup>15</sup>, E. Stech, W. Tan, and M. Wiescher<sup>10</sup> Department of Physics and the Joint Institute for Nuclear Astrophysics, Notre Dame, Indiana 46556, USA



new measurements UNDERGROUND needed





# Grant started on 2 December 2024





Outputs Collaborations Contact Home News Project People



#### 2 PhD students just started, 1 PDRA Exp (Feb 2025), 1 PDRA Theo (recruiting)

# In Summary...

- Experience with Direct and Indirect Methods in Nuclear Astrophysics
- Radioactive and Stable Beam Experiments
- Surface and Underground Laboratories

Enjoyed many fruitful collaborations throughout my career Look forward to further collaborations with the Mainz group

