Hadronic Vacuum Polarization from LQCD

Sebastian Fritz Lahrtz

Johannes-Gutenberg University, Institute of Nuclear Physics

10.12.2024

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Current status

- g-2 as precision test for standard model
- LQCD as only first principle method for HVP contribution to g-2
- New result from Mainz¹, main sources are for uncertainties are long-distance window and isospin breaking

Figure: Current HVP result

Figure: Sources of uncertainties

¹The hadronic vacuum polarization contribution to the muon g-2 at long distances: arXiv: 2411.07969 $(\square \rightarrow (\bigcirc) \land () \land ($

S. Lahrtz (KPh, JGU)

Hadronic Vacuum Polarization from LQCD

10.12.2024 2/4

Low-Mode Averaging (LMA)

- Low-lying eigenstates dominate statistical error
- Decompose Dirac operator into low-mode contribution and a propagator for the remaining high modes
- Procedure:
 - Calculate the lowest eigenstates directly
 - Project out the eigenstates and solve the remaining Dirac equation
 - Cross terms by placing eigenmode as source

Figure: Different contributions within LMA

S. Lahrtz (KPh, JGU)

Further Planned Steps

- Calculate strong isospin breaking using LMA
- $C(x_0, y_0,) = \sum_{\vec{x}, \vec{y}, z} \langle J_{\mu}(y) | (\bar{u}u \bar{d}d)(z) | J_{\nu}(x) \rangle$
- Procedure:
 - Disconnected diagrams, reasons: not been included yet and computational less difficult
 - Connected diagrams
 - possible combination with QED effects
- Final goal: better understanding of isospin breaking effects and reduction of the error of the HVP contribution to g-2