Hyperfine Splitting in Muonic Hydrogen

Measure the 1s-HFS in μp with a relative accuracy $\delta \approx 10^{-6}$

Ahmed Ouf

1S Hyperfine Splitting in muonic hydrogen

• Extract the 2γ -contribution with relative accuracy of $\approx 10^{-4}$

Antognini, Hagelstein, Pascalutsa, Annual reviews 389, 418 (2022)

Ahmed Ouf

The principle of the experiment

- > Stop muon beam in 1 mm H_2 gas target at 22 K, 0.5 bar
- Wait until µp atoms de-excite and thermalize
- > Laser pulse: $\mu p(F=0) + \gamma \rightarrow \mu p(F=1)$
- > De-excitation: $\mu p(F=1) + H_2 \rightarrow \mu p(F=0) + H_2 + E_{kin}$
- Diffusion: µp diffuses to Au-coated target walls

The laser system

Ahmed Ouf

10.12.2024 SFB

Search for the resonance

- Steps to search for resonance
- Measure 1.4 h at fixed wavelength to expose a 4 σ effect over background
- 1 h to change the laser frequency in steps of 100 MHz

10 Weeks of beam time

• Simulation of the search for resonance

Ahmed Ouf

Charge radii from muonic X-rays

•Radii of Z=1,2 by with laser spectroscopy

•Z>10 Measured with semiconductor x-ray detectors, limited by nuclear theory and charge distribution input: <u>https://arxiv.org/abs/2409.08193</u>

Z<10 limited by experimental resolution

- (electron scattering or semiconductor x-ray detectors)
- \rightarrow statistical variance of number of number of electron-hole pairs created

Unit of heat \ll Unit of Ionization:

 $\bullet \Delta T \cong E_{deposited} \ / \ C_{tot}$

IG

- • Δ T / T large \rightarrow operate < 0.1 K
- •A very good temperature sensor

Use Novel Metallic Magnetic Calorimeter (MMC) detectors

Experimental goal with MMC

Ahmed Ouf

Spectroscopy with MMC

Quartet: First measurements ongoing for Li, Be, and B isotopes Unprecedented resolution for muonic x-ray spectroscopy Approved experiment at PSI

64 pixel MMC array

Spectroscopy with MMC

Quartet: MMC from the *basement* to an online experimental environment

 \rightarrow 2023 test beam at PSI with Li/B/Be

 \rightarrow Applying a new technology: it's not that

simple

 \rightarrow 2024 upgrades

•New 18-bit digitizers

•New detector with fast thermalization

•Measure ADC properties and T stabilize Vref

•Tuned calibration sources

Long & stable measurements

Aligned on Li7 line and disregarded 7 pixels with bad energy resolution

Ahmed Ouf