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= Want to use Mainz Energy-recovering Superconducting
Accelerator (MESA) and the P2 experiment detector setup

Integrating Cherenkov-
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= Want to use Mainz Energy-recovering Superconducting
Accelerator (MESA) and the P2 experiment detector setup

= Need to match <Q2> =0.0062 (GeV/c)? of PREX-I
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= Want to use Mainz Energy-recovering Superconducting
Accelerator (MESA) and the P2 experiment detector setup

= Need to match <Q2> =0.0062 (GeV/c)? of PREX-I
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= Must account for and minimize non-elastic contributions
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When N = Z. p, and p, are almost the same. When N >> Z
neutrons are pushed towards the nuclear periphery. creating . g
neutron skin (NS), characterized by NS thickness: o
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Experimentally and theoretically determined R,q, in Pb
have had large systematic uncertainties. But precise study of

= How the simulation framework is built

Bridge between nuclear phy:

Nuclear Equation of State (EOS) describes the density.
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* Tidal deformability of 3 neutron star A, from LIGO-Virgo GW170817 observation

= How to reduce uncertainty from non-elastics § T

294Pb Nucleus

=  Which uncertainty in R, can we reach T

Mainz Energy-Recovering Superconducting Accelerator (MESA)
will provide us with

* 155 Me beam kinetic energy

27450 wh baaes cxerent By exchanging the hydrogen target of the P2
+ 85% beam polarization experiment with 0.5 mm 9P target, MREX can

S8 bt ot e use the same detector set-up to determine Ry,

beam monitors (polarization etc)

= How much measuring time we need
M MREX ==

Neutron star
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* Neutron star radius R, from NICER x-ray observation from PSR 1003040451

The tension between results above and high uncertainty of PREX provide motivation for MREX.

Average momentum transfer of MREX: <Q7> = 00062 (GeVie)’ to
match PREX and maximize sensitivity t neutrons skin
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Experimental set-up s chosen to:
= Maximize signal from elasti slectrons
= Minimize signal from non-elastic events.
and secondary produced particles.
Magnetic fied is set to maximum 07T to
bend out most of non-elastic contributions.

The preliminary target position is chosen with
raytracing software developed for P2

Monte-Carlo simulation
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Additional shielding

Need to find a way to reduce uncertainty from inelastic

contributions. Moving target upstream to let magnetc field

bend non-elastic lines can help, but then <Q?> changes.

Additional conical shielding next to the target helps:

Total systematic uncertainty of non-elastic contributions from Monte-Carlo results: 3
231 ppb (0.37%) without and 1.5 ppb (0.25%) with additional shielding. 4

Assuming 1% systematic uncertainty in A, from beam monitors and accounting for
sensiivty of An, we prodict R,

R
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Optimal target and shielding position is chosen to match <Q7>
.

82070, taget contor @ 2 = 50 e

and minimize total uncertainty

Conclusion

+ Precise determination of NS thickness in P is a great tool

to constrain Nuclear Equation of State and bridge nuclear
physics and astrophysics

Solenoid geometry of MREX allows for low statistical
uncertainty but requires additional shielding to deal with
non-elastic contributions.

We use Monte-Carto simulation to show that MREX needs.
atleast 1500 hours of measuring time to reach 0.5%
uncertainty in neutron radws determination.
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= How the simulation framework is built

» How to reduce uncertainty from non-elastics
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Neutron and proton density in nuclei are wel approximated
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Mainz Energy-Recovering Superconducting Accelerator (MESA)
will provide us with

* 155 Me beam kinetic energy

* 150 A beam current

+ 85% beam potarization

* < 19% systematic uncertainty from
beam monitors (polarization etc)

General information
The P2 simulation framework!! was modified for MREX.
It uses Geant4 to simulate interaction of:
+ Electron beam with target
+ Generated scattered electrons and secondary produced
particles with the detector set-up
It also includes the Cherenkov-detector response function.

By exchanging the hydrogen target of the P2
mm 299D target, MREX can
use the same detector set-up to determine Ry,

MESA, P2 and MREX X e

- magnitude
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820707, targetcontor @ 22960 mm  FOM = 55 Ao

Monte-Carlo simulation

Non-elastic contributions
Solenod geometry leads to 25 MeV excitation energy
acceptance. Pracise modeling of non-elastic ines is necessary.
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Uncertainties and measuring time

Total systematic uncertainty of non-elastc contrbutions from Monte-Carto results: e [
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Average momentum transfer of MREX: <Q7> = 00062 (GeVie)’ to
match PREX and maximize sensitivity t neutrons skin
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Experimental set-up s chosen to:
= Maximize signal from elasti slectrons
= Minimize signal from non-elastic events.
and secondary produced particles.
Magnetic fied is set to maximum 07T to
bend out most of non-elastic contributions.

‘The preliminary target position is chasen with
raytracing software developed for P2.

Additional shielding

Need to find a way to reduce uncertainty from inelastic

contributions. Moving target upstream to et magnat feld

band non-eastic nes can help. bt then <Q’> changes.

Additonal conical shieding next to the target helps
810707, target coner @2+ 850

Optimal target and shielding position is chosen to match <Q7>
‘and minimize total uncertainty.

Conclusion

+ Precise determination of NS thickness in P is a great tool
to constrain Nuclear Equation of State and bridge nuclear
physics and astrophysics

* Solenoid geometry of MREX allows for low statistical
uncertainty but requires additionat shielding to deal with
non-elastic contributions.

+ We use Monte-Carlo smulation to show that MREX needs
atleast 1500 hours of measuring time to reach 0.5%
uncertainty in neutron radws determination.




