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Agenda

1. Effective Field Theory I: Basic ideas
2. Effective Field Theory II: Nonrelativistic short-range EFT
3. Effective Field Theory III: Applications in hadrons and nuclei
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Resolution of a Microscope

Resolution of microscope is limited

Diffraction effects:
Light is EM wave (λ ≈ 550 nm)

Resolution: d =
λ

AN

Aperture: AN ≈ 0.95...1.5

−→ dmax ≈ 0.4µm

Quantum mechanics:
particles have wave character ⇒ matter waves

λ =
h
p

(de Broglie, 1924) ⇒ QM microscope

⇒ intrinsic resolution scale determined by typical p
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Scales in Physics

Difference between typical biological and physical Systems?

DNA molecule

many energy scales of comparable size
Hydrogen atom: few separated scales

Hierarchy: me ≪ mp ≪ mZ0 ≪ . . .

Physical quantities have units −→ dimensional analysis
(vgl. M. Planck, Sitzungsb. Preuß. Akad. Wiss. 5, 479 (1899)), “Planck units”)

E0 = me × f
(
α, me

mp
, me
mZ0

, . . .
)

f contains dynamics

How to exploit scale separation?

=⇒ Effective (Field) Theories (⇐⇒ Calculation of f)
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Hydrogen Atom

Quantum bound state of e− and p

Energy levels (lowest order): Schrödinger-Eq. for V(r) = −e2/r

E = E0 = −meα
2

2n2 , α =
e2

4π

Corrections beyond leading order: E = E0

[
1+O(α,

me

mp
, . . .)

]
corrections from EM interaction: fine structure L · S ∼ α4 , ...
corrections from proton structure: finite proton mass mp

hyperfine structure: µp

finite proton size: rp
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Dimensional Analysis

Estimate effect of rp on E0

Natural scales: a0 = 1/(meα) ∼ 0.5 Å (Bohr radius)

Proton charge radius: GE(q2) = 1+ q2

r2p/6︷ ︸︸ ︷
G′

E(0)+....

guess: G′
E(0) ∼ 1/m2

p, q ∼ 1/a0 =⇒
(

meα
mp

)2
∼ 10−11

Size of correction to E0: 10−11E0 → 10−11 × 3 · 1015 Hz ∼ 30 kHz
Estimated enhancement in muonic hydrogen by factor (mµ/me)

2 ≈ 2002

⇒ higher precision in muonic atoms possible
(R. Pohl et al., Nature 466, 213 (2010))

How to construct an effective theory to calculate the corrections from mp, µp, rp ?
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Construction of an Effective Theory

How to construct an effective theory to calculate these corrections?
Need to identify:

Low and high scales in the problem: Mlo , Mhi , ...
Active degrees of freedom: coordinates, particles, ...
Symmetries to constain interactions
Power counting: organize the theory through expansion in Mlo/Mhi

Guiding principle:

Include long-range physics explicitly, parametrize short-range physics in
low-energy constants

Consider an example from classical electrodynamics
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Example: Multipole Expansion

Separation of scales: ⟨r′⟩ ≪ r

Short-range physics: expand in ⟨r′⟩
r

−→ “power counting”
Breakdown scale: ⟨r′⟩ ∼ r

ϕ(r) =
∑
l,m

ClYlm(Ω)

rl+1

qlm︷ ︸︸ ︷∫
d3r′ρ1(r′)Y∗

lm(Ω
′)(r′)l

1
|r − r′| =

∑
l,m

ClYlm(Ω)Y∗
lm(Ω

′)
rl<
rl+1
>
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Example: Multipole Expansion

Separation of scales: ⟨r′⟩ ≪ r

Short-range physics: expand in ⟨r′⟩
r

−→ “power counting”
Breakdown scale: ⟨r′⟩ ∼ r

ϕ(r) =
∑
l,m

ClYlm(Ω)

rl+1

qlm︷ ︸︸ ︷∫
d3r′ρ1(r′)Y∗

lm(Ω
′)(r′)l +

∫
d3r′′ ρ2(r

′′)

|r − r′′|

Long-range physics: include explicitly
Use these ideas in the framework of Quantum Field Theory
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Weinbergs Conjecture

Quantum Field Theory is “only" way to satisfy quantum mechanics,
Lorentz invariance, and cluster decomposition

⇒ to calculate the most general S-matrix consistent with given symmetries for any
theory below some scale simply use the most general effective Lagrangian Leff
consistent with these principles in terms of the appropriate asymptotic states

(Weinberg, 1979)

Nonrelativistic systems: Lorentz invariance −→ Galilei invariance
=⇒ QM framework possible

Need “power counting scheme” to organize the infinitely many terms in Leff

=⇒ predictive power
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Construction of an EFT

Construct most general Leff respecting underlying symmetries

Exploit separation of scales: p,Mlo ≪ Mhi

Non-renormalizable theory, but only finite number of
operators in L contribute at each order

⇒ Low-energy constants (LEC)
Symmetries and light dof’s must be known

Work at low energies: p ≪ Mhi

Fix LEC’s from matching (to experiment, other theory, ...)
Calculate observables in expansion in p/Mhi,Mlo/Mhi

=⇒ limited range of applicability
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Light-By-Light Scattering

Classic Example (Euler, Heisenberg, 1936)

Photon energy ω, electron mass me

Separation of scales: ω ≪ me

Only photons are active dof ⇒ theory simplifies
⇒LQED[ψ, ψ̄,Aµ] → Leff [Aµ]

�

Invariants: FµνFµν , (FµνFµν)2, (Fµν F̃µν)2, ...,
with field strength tensor Fµν = ∂µAν − ∂νAµ, dual tensor F̃µν = 1

2 ϵ
µναβFαβ

Leff = − 1
4FµνFµν + c1︸︷︷︸

LEC

(FµνFµν)2 + c2︸︷︷︸
LEC

(Fµν F̃µν)2 + . . .

Estimate size & energy dependence of cross section −→ exercise
Observation in Pb-Pb Collisions at LHC
(ATLAS Kollaboration, Nature Physics 13, 852 (2017))

September 19, 2025 | Department of Physics | Institute for Nuclear Physics | H.-W. Hammer | 12



Fermi Theory

Weak decays

mediated by W± bosons (MW ≈ 80 GeV)
energy release in neutron β-decay ∼ 1 MeV [n → pe−ν̄e]
energy release in kaon decays ∼ 300 MeV [K → πeν]

e2

8 sin2 θW
× 1

M2
W − q2

q2≪M2
W

−→
e2

8M2
W sin2 θW

{
1+ q2

M2
W

+ . . .

}
=

GF√
2
+ . . .

=⇒ Fermi Theory of Weak Interaction
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Structure of EFTs

Energy/momentum expansion (derivatives acting on fields)
Dimensional analysis (breakdown scale Mhi)

derivatives → powers of typical momentum q
– one derivative: ∂ ∼ q/Mhi

– vertex w/ N derivatives: ∂N ∼ (q/Mhi)
N

– terms with more derivatives are suppressed if q ≪ Mhi

Loops: additional powers of momenta from vertices and loop momenta
=⇒ loops are generally suppressed compared to trees (exceptions!)

∼ (q/Mhi)
N ∼ (q/Mhi)

2N
∫

d4p f(p, q)︸ ︷︷ ︸
(q/Mhi)

M
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Additional Transparencies
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Construction of an QFT

1. Construct L respecting symmetries (e.g. gauge invariance of QED)

ψ → ψ′ = eiα(x)ψ, Aµ → A′
µ = Aµ − 1

e∂µαµ(x)
2. Retain renormalizable interactions (D ≤ 4): [ψ] = 3/2, [A] = 1

keep ψ̄γµψAµ︸ ︷︷ ︸
D=4

, but drop ψ̄σµνψFµν︸ ︷︷ ︸
D=5

, (FµνFµν)2︸ ︷︷ ︸
D=8

=⇒ L = ψ̄(i/∂ − e/A−m)ψ − 1
4
FµνFµν

3. Calculate Feynman diagrams:

4. Fix parameters from data → predictions

Example: µe = − egeSe
2me

, ge = 2
[
1+ e2

8π2 +O(e4)
]
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Renormalizability

Renormalization: method to make sense of infinities/UV sensitivities in QFT
Some observables are sensitive to short-distances ⇒ match to experiment and predict
other observables
Classical renormalizability: redefinition of a finite number of terms sufficient to all
orders (QED: e,me, Z3, Z2)
EFT: new structures appear at every order

Renormalizable theories have been very successful =⇒ Standard Model (SM)
Non-renormalizable interactions (D > 4) are suppressed at low energies ⇐=
factors 1/MD−4

hi

Modern understanding: SM is also low-energy EFT, physics beyond SM can be
included through non-renormalizable interactions
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