

Effective Field Theory I

Hans-Werner Hammer
Technische Universität Darmstadt

CRC 1660 Annual Graduate School Sep. 22-26, 2025, Schwäbisch Gmünd

Agenda

- 1. Effective Field Theory I: Basic ideas
- 2. Effective Field Theory II: Nonrelativistic short-range EFT
- 3. Effective Field Theory III: Applications in hadrons and nuclei

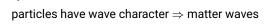
Literature

- G.P. Lepage, "What is renormalization", TASI Lectures 1989, arXiv:hep-ph/0506330
- $\hbox{D.B. Kaplan, ``Effective Field Theories'', NNPS Lectures 1995, arXiv:nucl-th/9506035.}$
- G.P. Lepage, "How to renormalize the Schrödinger equation", Swieca Lectures 1997, arXiv:hep-ph/0506330
- E. Braaten, HWH, "Universality in few-body systems with large scattering length", Phys. Rep. **428**, 259 (2006), arXiv:cond-mat/0410417

Resolution of a Microscope

- Resolution of microscope is limited
- Diffraction effects: Light is EM wave ($\lambda \approx 550$ nm)
- Resolution: $d = \frac{\lambda}{A_N}$
- Aperture: $A_N \approx 0.95...1.5$

$$\longrightarrow$$
 $d_{max} pprox 0.4 \,\mu{
m m}$



$$\lambda = \frac{h}{p}$$
 (de Broglie, 1924) \Rightarrow QM microscope

⇒ intrinsic resolution scale determined by typical p

Scales in Physics

Difference between typical biological and physical Systems?

- many energy scales of comparable size
- Hydrogen atom: few separated scales
 - Hierarchy: $m_e \ll m_p \ll m_{Z_0} \ll \dots$
- Physical quantities have units → dimensional analysis

(vgl. M. Planck, Sitzungsb. Preuß. Akad. Wiss. 5, 479 (1899)), "Planck units")

$$E_0 = m_e \times f\left(\alpha, \frac{m_e}{m_p}, \frac{m_e}{m_{Z_0}}, \ldots\right)$$

- f contains dynamics
- How to exploit scale separation?
 - \implies Effective (Field) Theories (\iff Calculation of f)

Hydrogen Atom

 \blacksquare Quantum bound state of e^- and p

■ Energy levels (lowest order): Schrödinger-Eq. for $V(r) = -e^2/r$

$$E = E_0 = -\frac{m_e \alpha^2}{2n^2}, \quad \alpha = \frac{e^2}{4\pi}$$

- Corrections beyond leading order: $E = E_0 \left[1 + \mathcal{O}(\alpha, \frac{m_e}{m_p}, \dots) \right]$
 - corrections from EM interaction: fine structure ${\bf L}\cdot{\bf S}\sim\alpha^4$, ...
 - $f \Box$ corrections from proton structure: finite proton mass m_p hyperfine structure: μ_p finite proton size: r_p

Dimensional Analysis

- Estimate effect of r_p on E_0
- Natural scales: $a_0 = 1/(m_e \alpha) \sim 0.5 \, \text{Å}$ (Bohr radius)

$$r_p^2/6$$

■ Proton charge radius: $G_E(q^2) = 1 + q^2 \widetilde{G'_E(0)} + ...$

guess:
$$G_E'(0) \sim 1/m_p^2, \quad q \sim 1/a_0 \implies \left(\frac{m_e \alpha}{m_p}\right)^2 \sim 10^{-11}$$

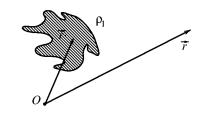
- Size of correction to E_0 : $10^{-11}E_0 \rightarrow 10^{-11} \times 3 \cdot 10^{15} \text{ Hz} \sim 30 \text{ kHz}$
- Estimated enhancement in muonic hydrogen by factor $(m_{\mu}/m_e)^2 \approx 200^2$
 - ⇒ higher precision in muonic atoms possible (R. Pohl et al., Nature **466**, 213 (2010))
- How to construct an effective theory to calculate the corrections from m_p , μ_p , r_p ?

Construction of an Effective Theory

- How to construct an effective theory to calculate these corrections?
- Need to identify:
 - Low and high scales in the problem: M_{lo} , M_{hi} , ...
 - Active degrees of freedom: coordinates, particles, ...
 - Symmetries to constain interactions
 - Power counting: organize the theory through expansion in M_{lo}/M_{hi}
- Guiding principle:
 - Include long-range physics explicitly, parametrize short-range physics in low-energy constants
- Consider an example from classical electrodynamics

Example: Multipole Expansion

- Separation of scales: $\langle r' \rangle \ll r$
- Short-range physics: expand in $\frac{\langle r' \rangle}{r}$
 - → "power counting"
- Breakdown scale: $\langle r' \rangle \sim r$

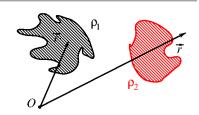


$$\phi(\mathbf{r}) = \sum_{l,m} \frac{C_l Y_{lm}(\Omega)}{r^{l+1}} \int d^3 r' \rho_1(\mathbf{r}') Y_{lm}^*(\Omega') (r')^l$$

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \sum_{l,m} C_l Y_{lm}(\Omega) Y_{lm}^*(\Omega') \frac{r_<^l}{r_>^{l+1}}$$

Example: Multipole Expansion

- Separation of scales: $\langle r' \rangle \ll r$
- Short-range physics: expand in $\frac{\langle r' \rangle}{r}$
 - → "power counting"
- Breakdown scale: $\langle r' \rangle \sim r$



$$\phi(\mathbf{r}) = \sum_{l,m} \frac{C_l Y_{lm}(\Omega)}{r^{l+1}} \int d^3 r' \rho_1(\mathbf{r'}) Y_{lm}^*(\Omega')(r')^l + \int d^3 r'' \frac{\rho_2(\mathbf{r''})}{|\mathbf{r} - \mathbf{r''}|}$$

- Long-range physics: include explicitly
- Use these ideas in the framework of Quantum Field Theory

Weinbergs Conjecture

Quantum Field Theory is "only" way to satisfy quantum mechanics, Lorentz invariance, and cluster decomposition

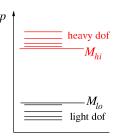
 \Rightarrow to calculate the most general S-matrix consistent with given symmetries for any theory below some scale simply use the most general effective Lagrangian \mathcal{L}_{eff} consistent with these principles in terms of the appropriate asymptotic states

(Weinberg, 1979)

- Nonrelativistic systems: Lorentz invariance → Galilei invariance
 - ⇒ QM framework possible
- lacksquare Need "power counting scheme" to organize the infinitely many terms in $\mathcal{L}_{\mathsf{eff}}$
 - ⇒ predictive power

Construction of an EFT

- Construct most general \mathcal{L}_{eff} respecting underlying symmetries
- Exploit separation of scales: $p, M_{lo} \ll M_{hi}$
- lacktriangleright Non-renormalizable theory, but only finite number of operators in $\mathcal L$ contribute at each order
 - ⇒ Low-energy constants (LEC)
- Symmetries and light dof's must be known



- Work at low energies: $p \ll M_{hi}$
- Fix LEC's from matching (to experiment, other theory, ...)
- Calculate observables in expansion in p/M_{hi} , M_{lo}/M_{hi}
 - ⇒ limited range of applicability

Light-By-Light Scattering

- Classic Example (Euler, Heisenberg, 1936)
- Photon energy ω , electron mass m_e
- Separation of scales: $\omega \ll m_e$
- Only photons are active dof \Rightarrow theory simplifies $\Rightarrow \mathcal{L}_{OFD}[\psi, \bar{\psi}, A_{\mu}] \rightarrow \mathcal{L}_{eff}[A_{\mu}]$

Invariants: $F_{\mu\nu}F^{\mu\nu}$, $(F_{\mu\nu}F^{\mu\nu})^2$, $(F_{\mu\nu}\tilde{F}^{\mu\nu})^2$, ..., with field strength tensor $F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu$, dual tensor $\tilde{F}^{\mu\nu}=\frac{1}{2}\epsilon^{\mu\nu\alpha\beta}F_{\alpha\beta}$

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \underbrace{c_1}_{\text{LEC}}(F_{\mu\nu}F^{\mu\nu})^2 + \underbrace{c_2}_{\text{LEC}}(F_{\mu\nu}\tilde{F}^{\mu\nu})^2 + \dots$$

- Estimate size & energy dependence of cross section → exercise
- Observation in Pb-Pb Collisions at LHC (ATLAS Kollaboration, Nature Physics 13, 852 (2017))

Fermi Theory

■ Weak decays

- mediated by W^{\pm} bosons ($M_W \approx 80$ GeV)
- energy release in neutron β -decay $\sim 1 \text{ MeV } [n \to pe^-\bar{\nu}_e]$
- f e energy release in kaon decays \sim 300 MeV [$K
 ightarrow \pi e
 u$]

$$\frac{e^{-\frac{1}{\nu_e}}}{\frac{q^2}{W^-}} \rightarrow \frac{e^{-\frac{1}{\nu_e}}}{\frac{q^2}{W^-}} \rightarrow \frac{e^{-\frac{1}{\nu_e}}}{\frac{q^2}{W^-}}$$

⇒ Fermi Theory of Weak Interaction

Structure of EFTs

- Energy/momentum expansion (derivatives acting on fields)
- Dimensional analysis (breakdown scale M_{hi})
 - derivatives \rightarrow powers of typical momentum q
 - one derivative: $\partial \sim q/M_{bi}$
 - vertex w/ N derivatives: $\partial^N \sim (q/M_{hi})^N$
 - terms with more derivatives are suppressed if $q \ll M_{hi}$
 - Loops: additional powers of momenta from vertices and loop momenta
 - ⇒ loops are generally suppressed compared to trees (exceptions!)

$$\sim (q/M_{hi})^N$$
 $\sim (q/M_{hi})^{2N} \underbrace{\int d^4p f(p,q)}_{(q/M_hi)^M}$

Additional Transparencies

Construction of an QFT

1. Construct \mathcal{L} respecting symmetries (e.g., gauge invariance of QED)

$$\psi \to \psi' = e^{i\alpha(\mathbf{x})}\psi, \quad \mathbf{A}_{\mu} \to \mathbf{A}'_{\mu} = \mathbf{A}_{\mu} - \frac{1}{e}\partial_{\mu}\alpha_{\mu}(\mathbf{x})$$

2. Retain renormalizable interactions ($D \le 4$): $[\psi] = 3/2$, [A] = 1

$$\text{keep}\underbrace{\bar{\psi}\gamma_{\mu}\psi\mathsf{A}^{\mu}}_{\mathsf{D}=\mathsf{4}},\quad \text{but drop}\,\underbrace{\bar{\psi}\sigma_{\mu\nu}\psi\mathsf{F}^{\mu\nu}}_{\mathsf{D}=\mathsf{5}},\quad \underbrace{\left(\mathsf{F}_{\mu\nu}\mathsf{F}^{\mu\nu}\right)^{2}}_{\mathsf{D}=\mathsf{8}}$$

$$\implies \qquad \mathcal{L} = \bar{\psi} (i \partial \!\!\!/ - e \!\!\!\!/ \!\!\!/ - m) \psi - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

3. Calculate Feynman diagrams:
$$P(e) = P(e) + P(e) + P(e)$$

4. Fix parameters from data → predictions

Example:
$$\mu_{\rm e} = -\frac{{\rm e}g_{\rm e} s_{\rm e}}{2m_{\rm e}}, \quad g_{\rm e} = 2\left[1+\frac{{\rm e}^2}{8\pi^2}+{\cal O}({\rm e}^4)\right]$$

Renormalizability

- Renormalization: method to make sense of infinities/UV sensitivities in QFT
 - Some observables are sensitive to short-distances ⇒ match to experiment and predict other observables
 - Classical renormalizability: redefinition of a finite number of terms sufficient to all orders (QED: e, m_e, Z₃, Z₂)
 - EFT: new structures appear at every order
- Renormalizable theories have been very successful ⇒ Standard Model (SM)
- Non-renormalizable interactions (D > 4) are suppressed at low energies factors $1/M_{bi}^{D-4}$
- Modern understanding: SM is also low-energy EFT, physics beyond SM can be included through non-renormalizable interactions