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Exercises
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Introduction to Effective Field Theories

This is a collection of exercises which accompany the lecture. The exercises vary in difficulty
and length. You will probably not be able to solve all exercises during the exercise session. You
may use mathematica for analytical /numerical calculations where appropriate. Discussions are
strongly encouraged.

1 Dimensional analysis I: Planck units

Construct the Planck length [p, the Planck mass mp, and the Planck time ¢p from the funda-
mental constants G, h and c. Estimate their size in SI units and compare to typical time scales
from particle physics. What is the significance of these units?

2 Dimensional analysis I1I: photon-photon scattering
Consider photon-photon scattering using the Euler-Heisenberg Lagrangian,
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discussed in the lecture. Determine the dependence of the LEC’s ¢; and ¢y on the elementary
charge e and the electron mass m, from the leading QED diagram contributing to this process.
Estimate the size of the amplitude for photon-photon scattering at energies well below the
electron mass, E, < m,. Estimate the size of the cross section for E, < m,.

3 Naturalness for a square well potential

Consider the attractive radially symmetric square well potential

V(ir) = —VW, r <7,
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where Vy > 0. The S-wave scattering length for scattering of a particle of mass m off this

potential is
tan(koro)
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where kg = v/mVj. Assume a constant probability distribution P(kg) for kg (rq is fixed) and
derive the resulting probability distribution P(a) for a. Use the relation

P(a)da = P(ko)dko .

For rorg > 7 the term tan(korg) in Eq. (1) changes for small variations of k¢ much more
strongly than 1/k¢rg. The variation of 1/k¢r can thus be neglected. Sketch the result and give
an interpretation. What the most probable value of a?

4 Power Counting

Consider a short-range effective field theory with natural interaction terms. In the lecture it
was shown that a Feyman diagram with arbitrary 2-particle exchanges for small momenta &
scales like k”. The following expression was derived for the exponent v:

v=3L+2+ ) (2 —2)Vh,

where L denotes the number of loops and V5; the number of 2-body interactions with 2: deriva-
tives. Generalize this expression to include arbitrary natural N-particle interactions. Give the
diagrams for 3 — 3 particle scattering in the lowest three orders in v.

5 Dimer formalism 1

In systems with short-range interactions and a large scattering length, it is often convenient to
introduce an explicit dimer field. Show that the Lagrangian with the dimer field d,
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is equivalent to the standard Lagrangian without explicit dimer field
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up to N-body interactions with N > 4. Use the classical equation of motion for the dimer field.
Do you obtain the same observables in 3- and 4-body systems with the two Lagrangians?

6 Dimer formalism I1

Consider the two-particle problem in the theory with an explicit dimer field using the Lagran-
gian in Eq. (2).

1. Which diagrams contribute to the full dimeron propagator? How is the 2-body scattering
amplitude obtained from the full dimer propagator?

2. Calculate the full dimeron propagator and the 2-body scattering amplitude.



