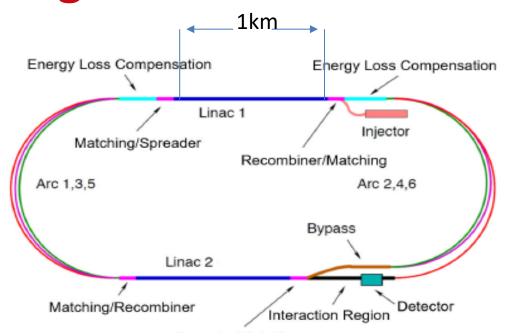
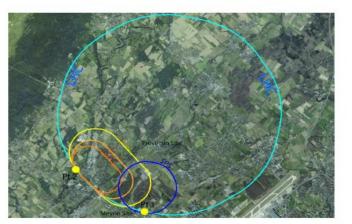
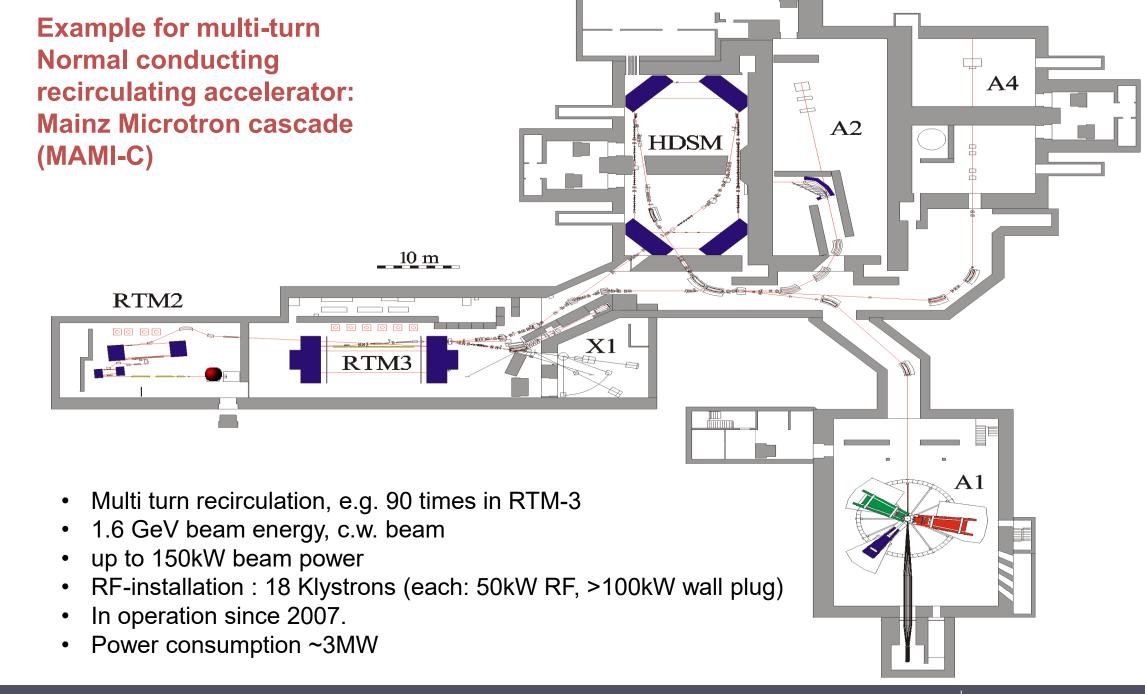
STATUS MESA


SFB Students workshop
Schwäbisch Gmünd, Tue 09/23/25
Kurt Aulenbacher for the MESA team
Institut für Kernphysik, Johannes Gutenberg-Universität Mainz


Outline

- ERL's and the future of accelerator based particle physics
- Mainz Energy-recovering Superconducting Accelerator (MESA) and its potential impact
- MESA's experimental line-up
- Status of the project

Large Scale ERL's: The LHeC


3 recirculations, 50 GeV, 20mA Linac-current... could be realized "soon"

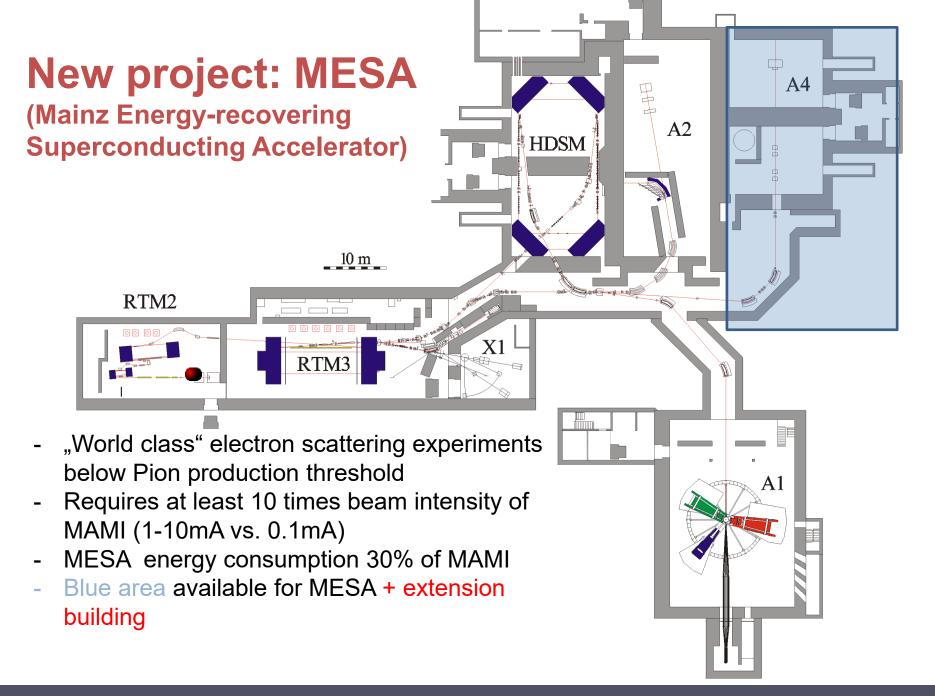

CERN-ACC-Note-2020-0002

Figure 10.49: Racetrack options proposed for LHeC at Point 2 of the LHC. The color coding illustrated different options with 1/3, 1/4 and 1/5 of the LHC circumference, resulting in different electron beam energies.

- low interaction of beam with experiment required (colliders, gas targets, undulators...)
- Energy at Experiment $E_0 + \Delta E^*$ #recirculations
- ERL's reduce energy consumption for beamloading by factor $G \approx \#rec\Delta E/E_0$
- (G corresponds to almost a Gigawatt for LHeC
- LHeC plans with #rec=3)

MESA has a goal related to the development of particle acclerators:

MESA as multi-turn SRF ERL will help extrapolating towards large scale ERL-projects, i.e. reduce project risks

MESA in the (future) Landscape

The largest beam power in multi-turn superconducting ERL has been achieved at TU-Darmstadt!

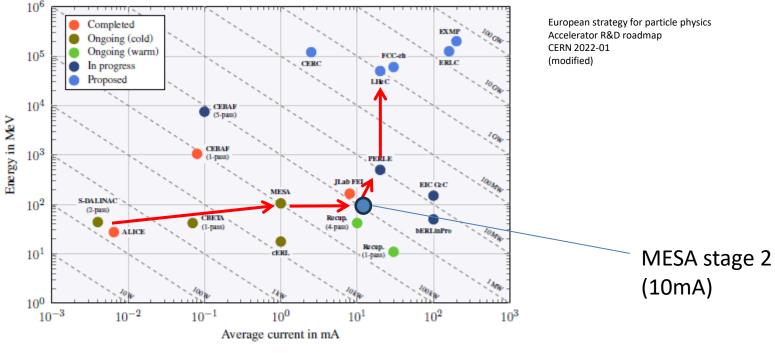
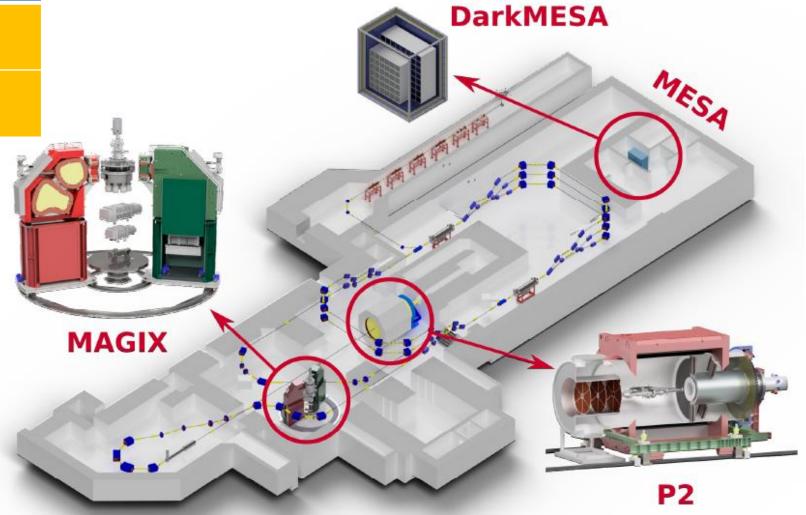
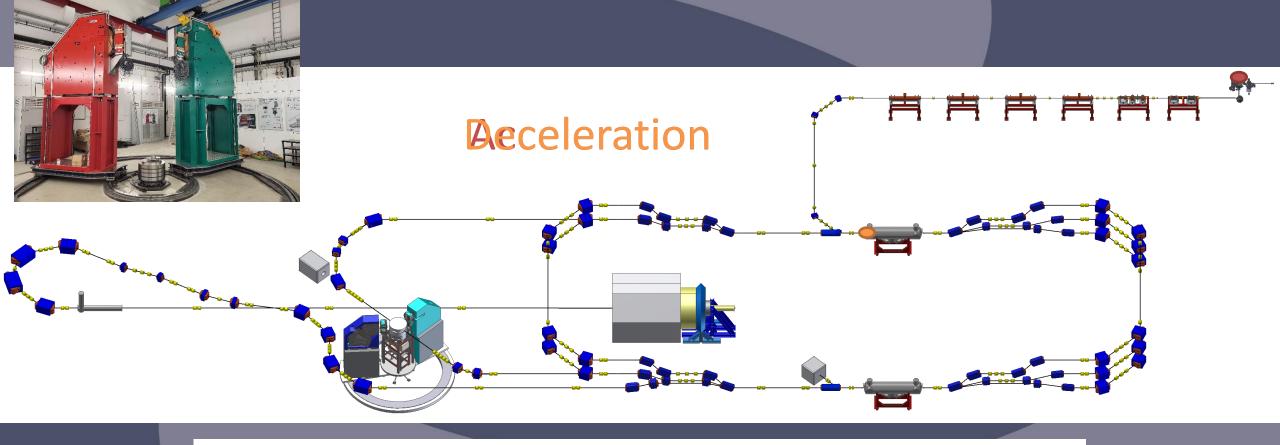


Fig. 6.1: Electron energy E vs. electron source current I for classes of past, present and possible future ERL facilities as are introduced in the text. Dashed diagonal lines represent constant power, $P[kW] = E[MeV] \cdot I[mA]$.

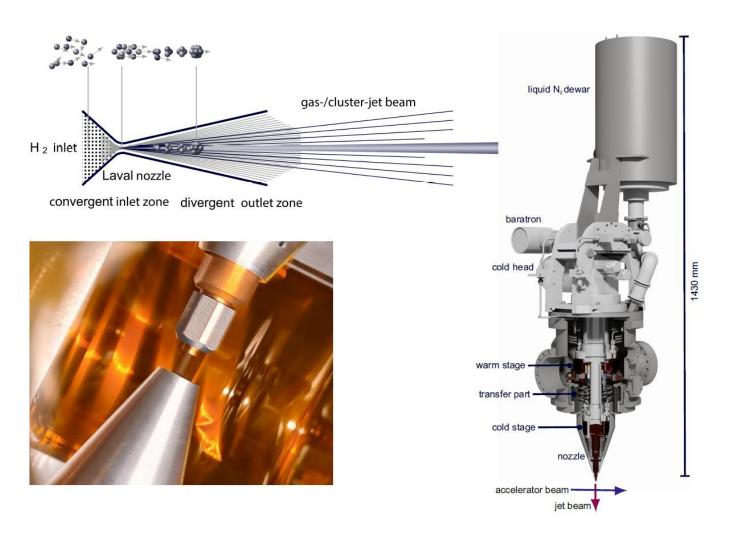

MESA has another scientific goal:

MESA is a machine that is optimized to serve specific nuclear and particle physics experiments


MESA Operational modes & Experiments

Op-mode	Target	Beam power@target
Ext. Beam (EB)	Solid/ Liquid	0-25kW
Energy recovery(ERL)	Gas-jet	0.1-1MW

Energy Recovery Mode – MAGIX



MESA will be a two-turn superconducting ERL

- Aims to demonstrate significantly higher beam currents than at existing multiturnsuperconducting ERL's
- Staged approach, adapted to needs of experiments (55 MeV EB, single turn ERL,...)

Gas Jet target at MAMI A1 /MAGIX

Gas Jet target
designed
by AG Khoukaz from
U- Münster
→ And tested with
beam at MAMI/A1

Harald Merkel, DPG-Tagung Mainz 03/22

Experimental program at MAGIX

Hadron Structure

Topic	Reaction	Jet	Observables
p Formfactor	H(e,e')p	Н	$G_E(Q^2), G_M(Q^2), r_E, r_M$
d Formfactor	D(e,e')d	D	$A(Q^2), B(Q^2), r_d$
³ He Formfactor	3 He $(e,e')^{3}$ He	³ He	r_E
⁴ He Formfactor	$^{4}\mathrm{He}(e,e')^{4}\mathrm{He}$	⁴ He	r_E

Few-Body Systems

d Breakup	D(e, e'p)	D	${ m d}\sigma/{ m d}\Omega$, polarizabilities
³ He inclusive	3 He (e,e')	³ He	Structure functions, R_L
⁴ He inclusive	$^{4}\mathrm{He}(e,e')$	⁴ He	Structure functions, R_L
⁴ He monopole	$^{4}\text{He}(e,e')^{4}\text{He}^{*}$	⁴ He	Transition Formfactors $E(^4\text{He}^*)$, $\Gamma(^4\text{He}^*)$
$^{16}\mathrm{O}$ inclusive	$^{16}{\rm O}(e,e')$	^{16}O	Structure functions, R_L
⁴⁰ Ar inclusive	40 Ar (e,e')	^{40}Ar	Structure functions, R_L
³ He exclusive	3 He $(e,e'p/d)d/p$	³ He	$\mathrm{d}\sigma/\mathrm{d}\Omega$
⁴ He exclusive	$^{4}\mathrm{He}(e,e'p/d)$	⁴ He	$\mathrm{d}\sigma/\mathrm{d}\Omega$

Dark Sector

Leptonic Decay	$Ar(e,A' \rightarrow e^+e^-)$	⁴⁰ Ar, Xe	Lepton pair mass $m_{A'}$ peak search
Invisible Decay	p(e,e'p)A'	Н	Missing mass $m_{A'}$ peak search

Astrophysical Reactions

S-Factor Phase 1	$^{16}O(e, e'\alpha)^{12}C$	^{16}O	$S_{E1}(E)$, $S_{E2}(E)$
S-Factor Phase 2	$^{16}O(e, e'\alpha)^{12}C$	^{16}O	$S_{E1}(E)$, $S_{E2}(E)$

H.Merkel Talk at DPG Springmeeting 2022

Accelerator devices for Experiments-MAGIX

NEW due to ERL/gas target vs. already **established** at MAMI:

- NEW: Kollimation system → example
- Established Non-invasive beam diagnostics & feedback → see P2
- Established Beam dump (concept, installation ongoing)
- Established: Absolute energy calibration

Luminosity limitation ERL gas jet target

Coulomb scattering - expect for fixed power loss and geometry: $L_{max} \propto \frac{1}{Z^2} E_{beam}$ Confirmed by G4 (BDSIM) simulation of deceleration process. Losses can be concentrated in collimator region separated from experiment and accelerator

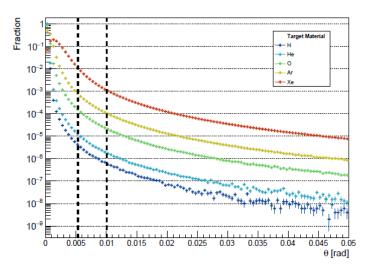
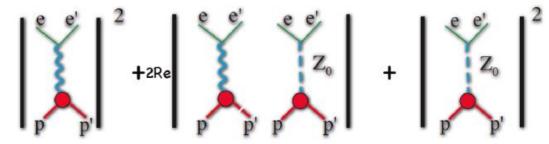


Figure 5.2: Angular distributions of the beam exiting the target for different MAGIX target gases. The vertical lines mark 10σ of the incoming beam (left) and $10\,\mathrm{mrad}$ (right). Error bars are according to the statistical error.

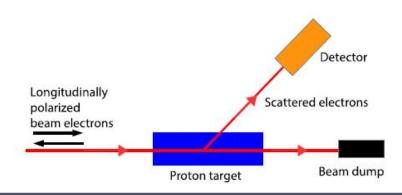
Results for "two collimator" system at 100kW, 105MeV Total loss <100 Watt, loss in accelerator <0.05 W.

Target	$n_{ m spoiler}$	$n_{ m col}$	$\mathcal{L}_{\mathrm{max}} \; [\mathrm{cm}^{-2} \mathrm{s}^{-1}]$
Н	13	13	$7.595{ imes}10^{35}$
${\rm He}$	13	13	2.505×10^{35}
O	14	14	2.408×10^{34}
Ar	18	18	7.916×10^{33}
Xe	18	20	5.959×10^{32}

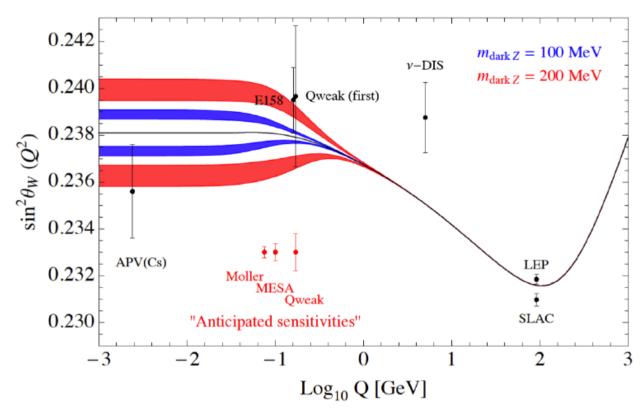

Ben LeDroit, PhD thesis Mainz 2021 http://doi.org/10.25358/openscience-5808 Calculation for realistic MAGIX geometry

Acclerator devices for Experiments-P2

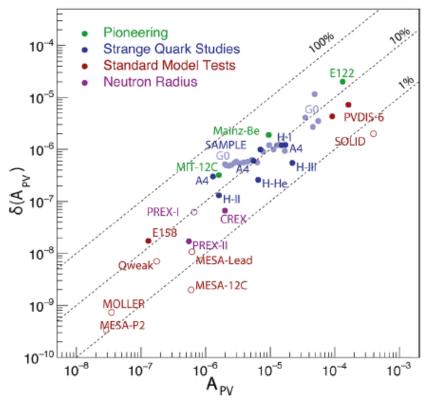
- nothing fundamentally new, but huge improvements wrt MAMI needed
- Non-invasive beam diagnostics & feedback
- Polarimetry
- Helicity switching speed *20


EB-Experiment P2

D. Becker et al. Eur. Phys. J. A **54** (2018) 11, 208 DOI: 10.1140/epja/i2018-12611-6 &166,

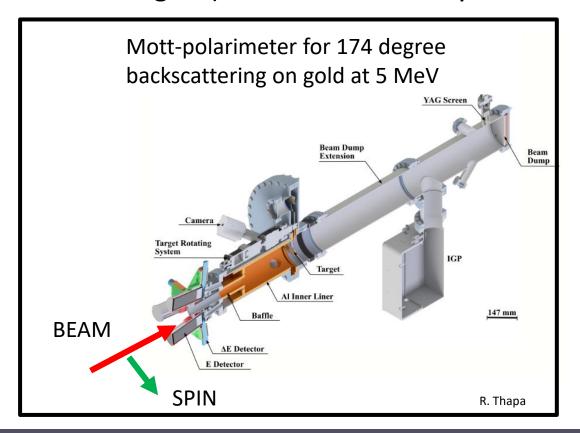


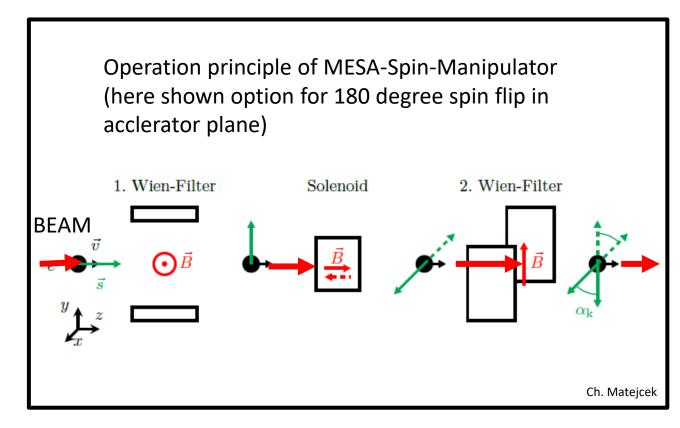
Interference term is parity-violating Beam helicity asymmetry:


$$\Rightarrow A_{PV} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

EB-Experiment P2

Weak charge of the proton: $Q_w(p) = 1 - 4\sin(\theta_w)^2$ A weak charge measurement with accuracy 1.4% yields an accuracy $\Delta\sin^2(\theta_w)/\sin^2(\theta_w) = 0.16\%...$ The asymmetry is $\propto Q^2$ and $\propto P$

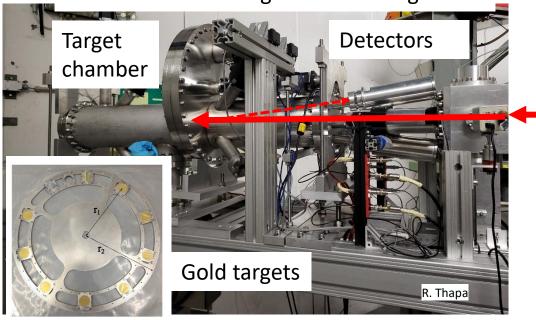



D. Becker et al. Eur. Phys. J. A **54** (2018) 11, 208 DOI: 10.1140/epja/i2018-12611-6 &166,

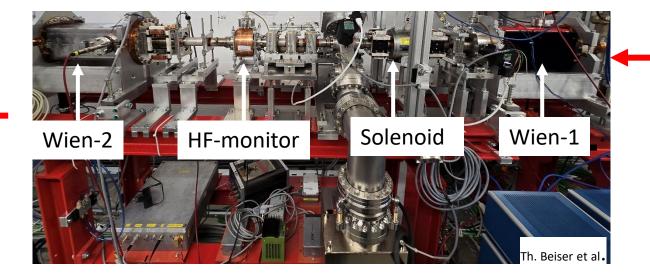
See talk by S. Baunack, today

Spin polarized beams at MESA - support of P2 experiment

- Accurate spin polarization measurement \rightarrow Mott polarimeter (5MeV, backscattering)
- Spin manipulation → "double" Wien filter (100keV) for arbitrary orientation in space
- Non invasive measurement of beam parameters under polarisation switch (various energies) → Resonant cavity monitors



Spin polarized beams at MESA - support of P2 experiment


- Mott polarimeter under test at MAMI: Detection system works, first asymmetries on gold targets measured
- "Double" Wien filter (100keV) both Filters and Solenoid operated with beam at parameters for 90 degree rotation
- kHZ-rate polarization switching obtained and beam current variation detected with 2.6 GHz RF-Monitor
- Bunched polarized beam achieved by photo.source using RF-synchronized high power fiber laser (150ps FWHM)

MESA-Mott under test at MAMI Elastic backscattering under 174 degree

~2 m

Wien filter assembly/HF-monitor at MESA

~1.8m

Deformation of $2\mu m$ Gold Target due to thermal stress(?) Observation of optical transition radiation at 3.5 MeV

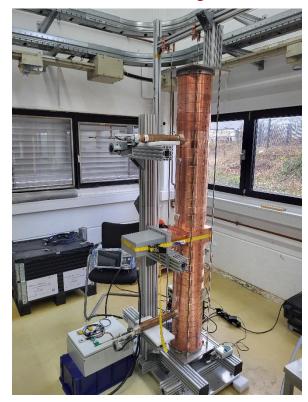
M. Dehn/R. Thapa

Status of installation

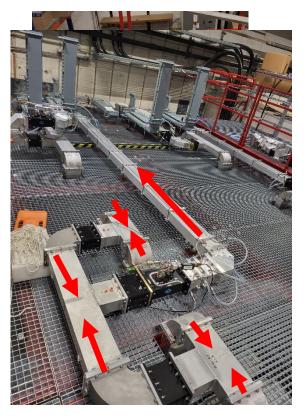
December 24 – installations begin...

Cryo-lines installed in "Shaft east"

LeHe distribution
In central cryobunker
(Hall-1)


Cryomodule 2 connected to cryo-line in "beam position" at corridor East

Cryomodule 1 connected to cryo-line in "beam position" at corridor West

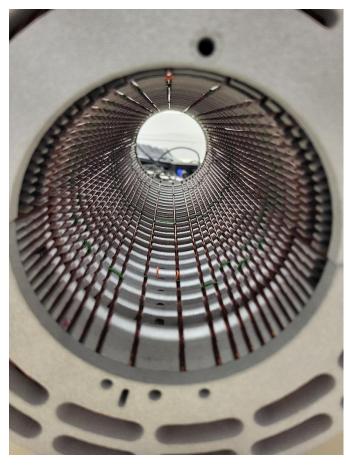

RF system

RF-section-1 ("graded beta") of normal conducting CW 5 MeV injector "MilliAMpere BOoster" aka "MAMBO" (10mA)

20kW 1300 MHz solid state amplifier modules total 17 modules

4*20kW get combined -providing power for RF-Section MAMBO-1

Waveguides direct power to circulators and finally to RF-sections behind shielding walls


Magnets for accelerator

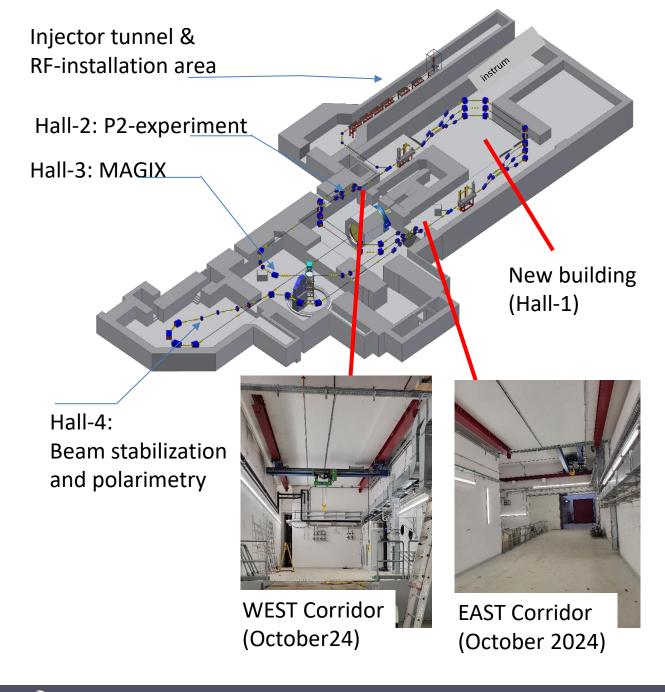
MESA 45 degree arc magnets

Intermediate storage space... All 105 Dipole magnets delivered . Magnetic measurements ongoing

Special magnet: Air coil 7.5 degree deflector for 5MeV Mott polarimeter (V. Tioukine)

Status: Some of the milestones achieved

- 1. HIM building functional since $11/24 \rightarrow$ Building controlled by KPH \rightarrow "Schlüsselgewalt!"
- 2. All RF-transmitters (17 modules) installed and operational (total 300kW RF-power)
- 3. Cryomodules installed at operating position, Helium liquefier upgrade completed.
- 4. All Dipole magnets (+ dipole vacuum chambers) delivered, sample specimen tested
- 5. Cryo-piping completed



Next bigger steps and (many smaller ones):

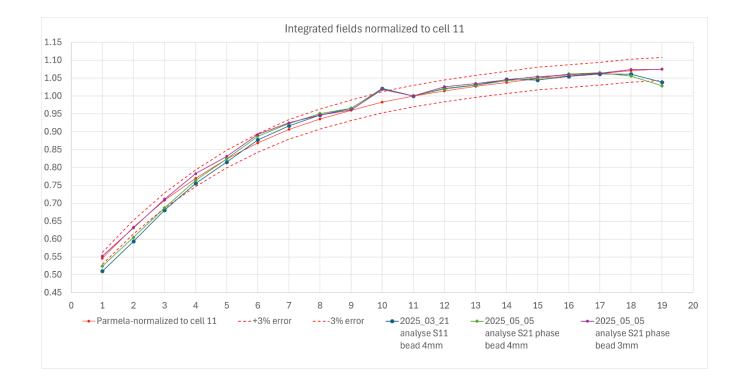
Cool down and test SRF modules as soon as installation of P2 solenoid completed (FEB 26)

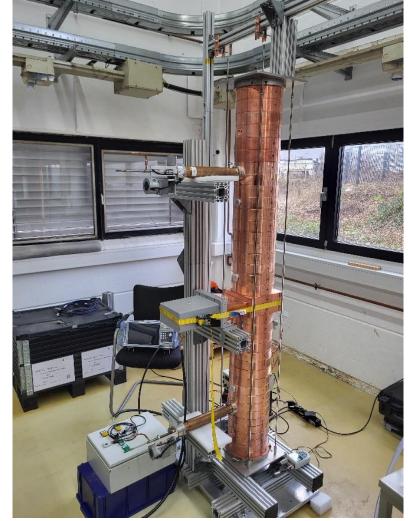
Continue installation of 100 meter long beamlines (Accel, MAGIX, P2)

Install MAMBO injector

Go for first beam 55MeV EB to experiment in October 2026

Risks (selection)

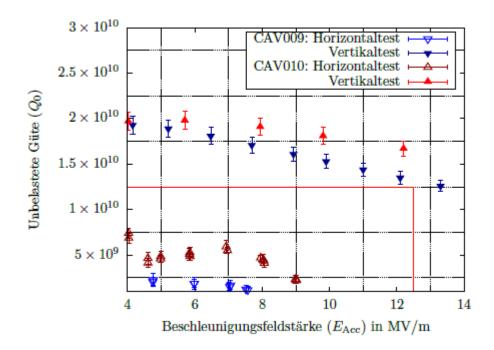

Risks (Selection)


Last "high-tech" component missing (ordered 12/2019!)

RF-structure MAMBO 1 ("graded beta"):

Manufacturer claims to have solved problems with field distribution.

Final soldering process and FAT next week!



RF-section-1 ("graded beta") of normal conducting CW 5 MeV injector "MilliAMpere BOoster" aka "MAMBO" (10mA)

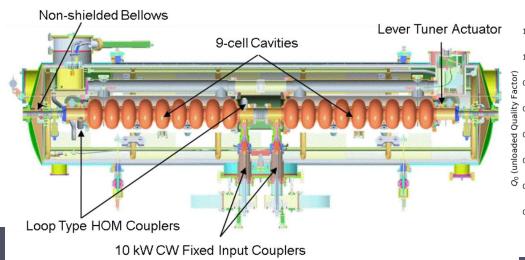
Risks (Selection)

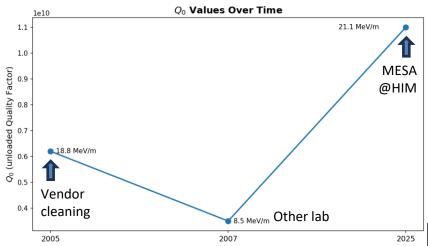
- Cryo-plant: 4 complex components from different vendors interact → sustained operation?
 Probability: Medium; Impact: costs + several month delay
- Cryomodules: Deterioration of cavity quality factor since tests at HIM? (particulate contamination?)
 Probability: low-medium, Impact: high (costs + 1 year delay)

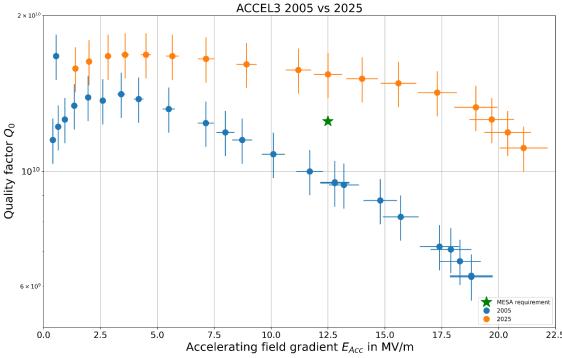
Effect of deterioration (PhD Thesis T. Stengler)

But, meanwhile, we can repair cavities!

Refurbishment of MESA Cavities @ HIM

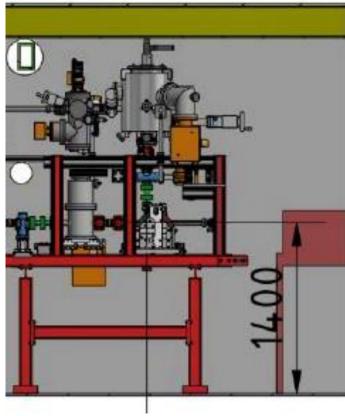

HIM Cleanroom usage for MESA cavities


Particle freedom required – ISO-4 limits to avoid field-emission


Cleanroom infrastructure @ HIM with high pressure rinsing (100bar) allowed a professional cleaning

Recovery of dirty SRF cavities successful with bad quench limit and quality factor (8.5 MeV/m @ Q_0 =3.5e10) to state of the art (21.1 MeV)

State-of-the-art cleaning (equal to DESY, J-Lab) allows cavity usage in MESA and SRF research



Thank you!

MESA spin polarized photosource "STEAM"

Laser

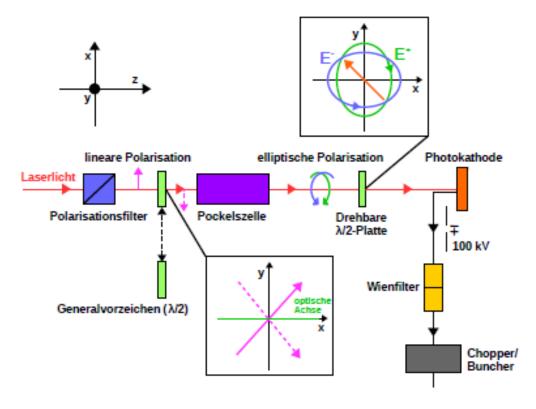
Spin-polarized cathodes are "activated" on-site and transferred to source in UHV

First beam from Spin-polarized Photosource "STEAM"

Laser	
type	Er-doped fiber
wavelength	780nm
Av. power	Up to 4 Watt
Rep-rate	5-1300 Mhz
Pulse length	50-250ps
photocathode	
type	GaAs/GaAsP SL
wavelength	780nm
Spin- polarization	80-90%
Quantum efficiency	~0.5% (3mA/Watt)
Response time	~1ps
Beam current	150μΑ
Charge lifetime	>100 Coulomb

R. Kempf et al.
Beam parameter stabilization for the P2 experiment at MESA https://doi.org/10.1016/j.nima.2020.164554

Requirement:


Good S/N, high sensitivity, high bandwidth → determine fasle asymmetry within reasonably short time with sufficient accuracy

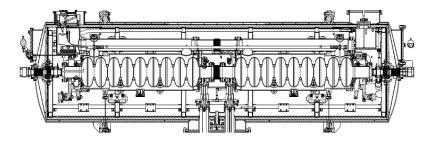
MESA XY Monitor Sensitivity: ~1Volt/(mm*μA)

Parameter	$\Delta ar{X}^i$	ΔX^i	ΔX^i mit $\Delta A(X^i) < 1$ ppb nach $t = 1$ h
X^1	$0.1\mathrm{ppb}$	13,4 ppm	1,34 ppm
X^2	$1,03\mathrm{nm}$	13,4 ppm 138 µm	13,8 µm ← Alroady
X^4	$0,236\mathrm{nrad}$	$31,7\mu\mathrm{rad}$	13,8 µm ← Already 3,17 µrad demonstrated
X^6	$0,042\mathrm{eV}$	$5,6\mathrm{keV}$	0,56 keV demonstrated

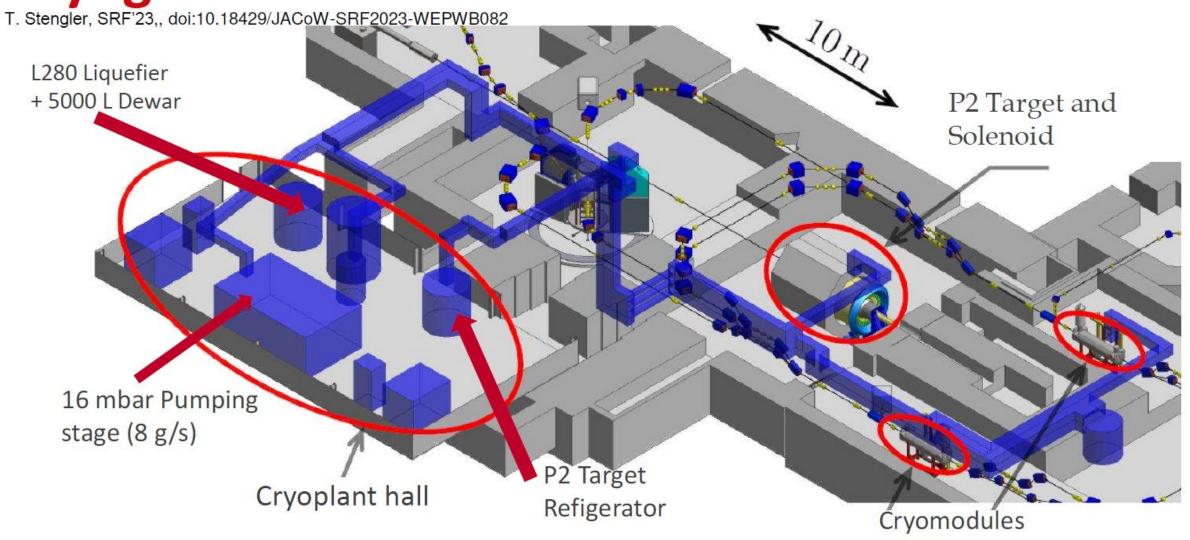
Beam parameter noise at 1kHz measurement rate To achieve desired accuracy after 10000 hours - or 10* less accuracy after 1 hour...

False asymmetries and their compensation

Helicty correlated intensity fluctuation


Caused by inhogeneous strain relaxation in photocathode (~1% asymmetry)

- > Compensation by directing (minimized) linear polarization componenents diaganal wrt strain relaxation
- \rightarrow This allows few ppm $\Delta X_{current}$


If normal conducting RF and Magnets are nt enough trouble – try SRF and SC-magnets! (....but trouble is our business)

3.5 meter
2-SRF modules Specs: 25MeV Energy
gain at <40 Watt thermal loss at
2Kelvin-SAT successfully completed in
August 2020 (!)

Cryogenic Infrastructure

Cryogenic Infrastructure

T. Stengler, SRF'23,, doi:10.18429/JACoW-SRF2023-WEPWB082

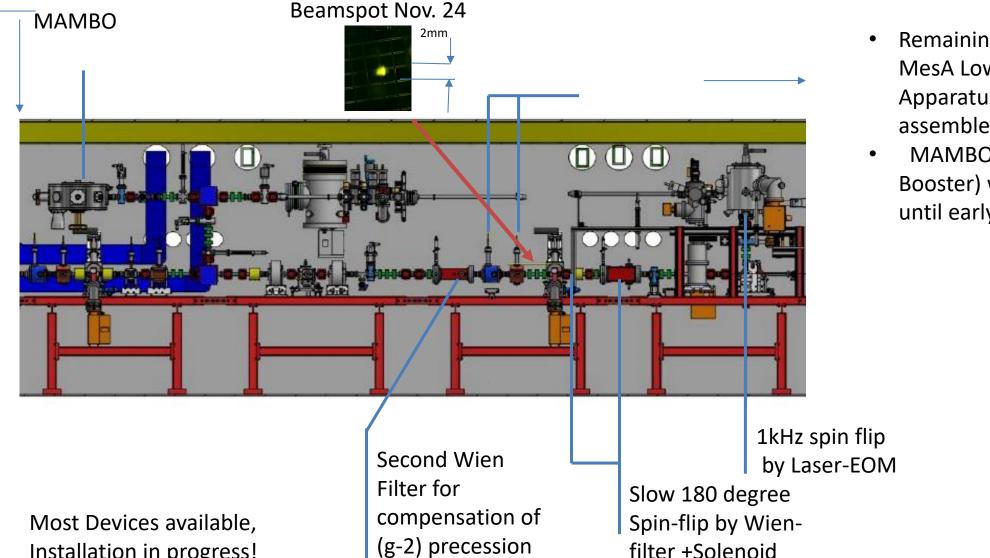
Key Components

- Liquefier for one year to upgrade:
 - 80K internal adsorber
 - LN2 pre-cooling for higher output
 - Controll system upgrade
 - SAT (without pre-cooling) last week!
- 16 mbar sub-amospheric compressor for 8 g/s He:
 - Installed and SAT: 30.11.2023
- P2-Refrigerator (15K, 4.5 kW)
 - Delivered and installed
 - SAT forseen in 11.2024

R. Kempf et al.
Beam parameter stabilization for the P2 experiment at MESA https://doi.org/10.1016/j.nima.2020.164554

Requirement:

Good S/N, high sensitivity, high bandwidth → determine fasle asymmetry within reasonably short time with sufficient accuracy


MESA XY Monitor Sensitivity: ~1Volt/(mm*μA)

Parameter	$\Delta ar{X}^i$	ΔX^i	ΔX^i mit $\Delta A(X^i) < 1$ ppb nach $t = 1$ h
X^1	$0.1 \mathrm{ppb}$	13,4 ppm	1,34 ppm
X^2	$1,03\mathrm{nm}$	13,4 ppm 138 µm	13,8 µm ← Already
X^4	$0,236\mathrm{nrad}$	$31,7\mu\mathrm{rad}$	3,17 µrad
X^6	$0,042\mathrm{eV}$	$5,6\mathrm{keV}$	0,56 keV demonstrated

Beam parameter noise at 1kHz measurement rate To achieve desired accuracy after 10000 hours - or 10* less accuracy after 1 hour...

MESA source spin rotation/spin control

filter +Solenoid

in MESA

- Remaining parts of 100keV-MesA Low-energy Beam Apparatus (MELBA) will be assembled still in 2024
- MAMBO (Milliampere Booster) will be installed until early summer 2025

Installation in progress!