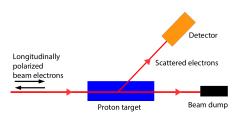
Design of a luminosity monitor for the P2 parity violating experiment at MESA


Tobias Rimke

CRC 1660: Graduate School

September 25 2025

P2-experiment

- ullet Precise determination of the electroweak mixing angle $\sin^2\Theta_w$ in parity violating elastic electron-proton scattering A^{PV}
- ullet By measurement of the weak charge of proton Q_W^p

$$egin{aligned} A^{PV} &= rac{d\sigma_{eN}^{+} - d\sigma_{eN}^{-}}{d\sigma_{eN}^{+} + d\sigma_{eN}^{-}} \ &= rac{-G_{F}Q^{2}}{4\pi\sqrt{2}lpha}(Q_{W}^{p} - F(Q^{2})) \ Q_{MV}^{p} &= 1 - 4 \cdot \sin^{2}\Theta_{W} \end{aligned}$$

- $A^{PV} \approx \mathcal{O}(10^{-8})$
- For measurement time of $10^4~h o {\Delta \sin^2\Theta_w \over \sin^2\Theta_w} = 0.16\%$

P2-experiment

ullet Parity violating asymmetry measured in experiment A_{exp} obtained from number of elastically scatterd electrons N^\pm :

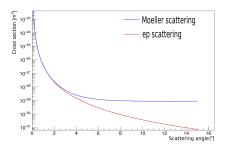
$$A_{exp} = P \cdot A^{PV} + A_{false}$$

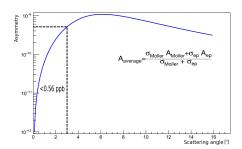
- $A_{false} o ext{helicity correlated fluctuations in beam parameters such as current } I_{beam}$, energy, beam position and angle and density fluctuations of the target ho
- ullet To achieve precision of $rac{\Delta \sin^2\Theta_w}{\sin^2\Theta_w}=0.16\%$, necessary to monitor A_{false}
- Luminosity L:

$$\mathcal{L} = \rho \cdot \mathbf{L} \cdot \mathbf{I}_{beam} / \mathbf{e}$$

• A_{exp} weighted by target density:

$$A_{exp} = \frac{(N^{+}/\rho^{+}) - (N^{-}/\rho^{-})}{(N^{+}/\rho^{+}) + (N^{-}/\rho^{-})} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} + \frac{I_{e}^{+} - I_{e}^{-}}{I_{e}^{+} + I_{e}^{-}} - \frac{\mathcal{L}^{+} - \mathcal{L}^{-}}{\mathcal{L}^{+} + \mathcal{L}^{-}}$$
$$= A^{PV} + A_{I_{c}} - A_{I_{c}}$$


P2 set up


- For the detector ring consisting of 72 fused silica bars, intend to use 8 LUMI monitors
- LUMI monitors placed downstream
- Distance from target $z_{position} = 4300 \text{ mm}$

Investigation of the dominant electron scattering processes at small scattering angles

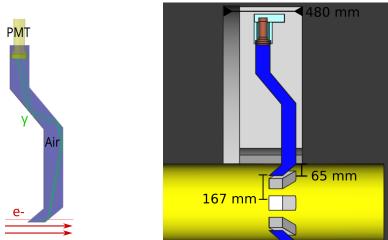
- Møller scattering
- 2 Electron proton scattering

Moeller scattering dominating

- $A_L \leq \Delta A^{PV} = 5.6 \cdot 10^{-10}$
- ullet Condition met for $heta \leq 3^\circ$

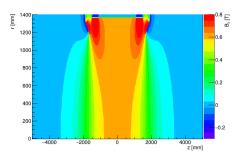
Luminosity monitor prototype

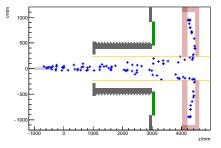
- ullet High event rate $\mathcal{O}(10^{13}~{
 m s}^{-1})$ at detector o challenges in signal readout, lifespan of electronics and radiation resistance
- Current idea for luminosity monitor: analog integrating air Cherenkov detector



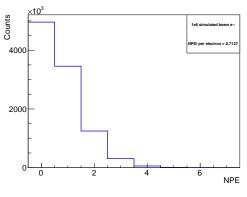
Different versions of LUMI monitors

- 4 LUMI prototypes tested
- Right side one can see the oldest version of the prototype and on the far left is the newest one


Luminosity monitor prototype

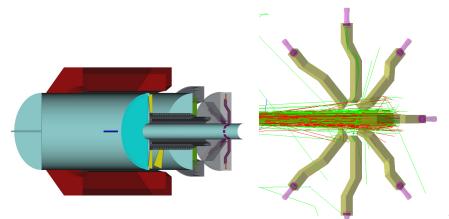

- Air (cherenkov material) stored in a funnel
- Cherenkov light is reflected on the walls, covered by special aluminium reflector from Alanod
- Detector consists of two parts: an "active part" within exit beamline and light guide protected by lead shield
- PMT placed at the end of light guide

LUMI and P2 magnetic field

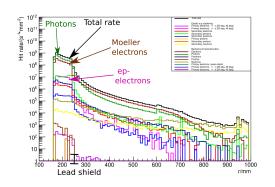

- LUMI positioned (z=4300 mm) at the edge of P2 magnetic field
- Some electrons deflected by the magnetic field so that they scattered in the LUMI
- Shape chosen so that scattered particles from the target that reach the PMT-readout electronics are suppressed

Air Cherenkov prototype in simulation

- Geant4 simulation: Electrons 155 MeV shot directly at detector
- ullet Determining number of Cherenkov photons o number of photoelectrons (NPE) at PMT cathode



NPE distribution

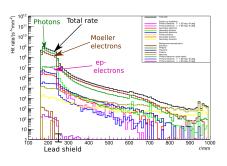

- Average NPE per beam electron 0.7127
- lacktriangle Small refractive index ightarrow small number of cherenkov photons

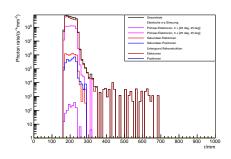
Simulation of physical processes within LUMI in the P2 experiment

- Geant4 simulation to test 8-LUMI detector ring:
- Real energy loss in targetMultiple scattering
- Secondary particles
- Full experiment set-up
- Lead shield (10 t) around LUMI monitors

Geant4 rate distribution for LUMI monitors

Simulated rate distribution of physical processes hitting luminosity monitor at $z_{position}$, r distance from beam axis, with complete P2 setup and magnetic field of solenoid


Largest particle contributions:


- Background photons 4.0913e+13 1/s
- Møller electrons 1.2002e+13 1/s

Largest signal contributions:

- Cherenkov threshold air $E_{min} = 20.87$ MeV
 - Møller electrons 3.6504e+12 1/s

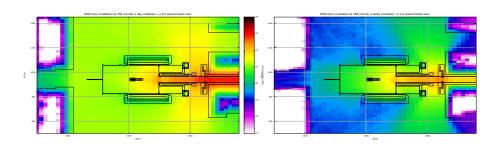
Geant4 Cherenkov photon rate

Rate distribution of physical processes as a function of the distance r from the beam axis

Rate distribution of Cherenkov photons as a function of the distance r from the beam axis

- Rate distribution of Cherenkov photons generated in the air volume is displayed with its corresponding parent particle
- Majority of Cherenkov photons are emitted in the designated "active area" of the LUMI

Simulated cathode current


 With the number of photons at the PMT, as well as the quantum efficiency: → cathode current is determined

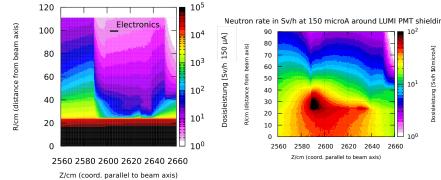
Cathode current	
Contribution	LUMI-Sickle [nA]
Background reconstructions	
Møller electrons	14.88
Elastic electron-proton scattering	
Primary electrons $\theta \notin [25 \text{ deg}, 45 \text{ deg}]$	5.1528
Secondary electrons Secondary positrons	0.0319
Secondary positrons	0.0129

- Cathode current per PMT = 20.0776 nA
- Anode current (dynode gain= 10^3)= 20.0776 μ A
- ullet One fused silica detector (1 GHz event rate) anode current = 8 μ A
- ullet After 2767 h active run time LUMI-PMT output will typically reduce by a factor of 50 %

FLUKA simulation LUMI

- Lead shield (10 t) and LUMI-detector in Fluka simulation (radiation protection assessment)
- Equivalent radiation dose rate after 1000 h irradiation
- Spectrum directly after turning of beam

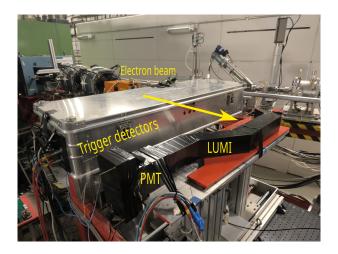
1 day cooldown


1 week cooldown

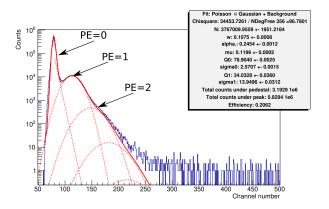
• Around beam axis $\approx 1 \text{ mSv/h}$

 $lap{mu}$ "" pprox 0.1 mSv/h

FLUKA simulation LUMI


Total dose rate in Sv/h at 150 microA around LUMI PMT shielding

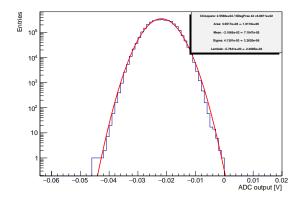
Radiation around PMT and readout electronics < 10 Sv/h


Characterization of LUMI spectra in beam tests at MAMI

- Single photoelectron measurement at mainzer accelerator
- Intensive testing of two measuring mods: Single event mode (kHz), integration mode (GHz)

Characterization of LUMI spectra by single photoelectron response function

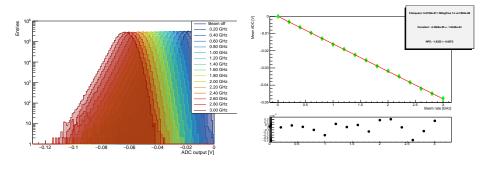
Single photoelectron measurement, electron rate ≈5 kHz



Response function of PMT signal:

$$P(n;\mu)\otimes G(x) + noise = \sum_{n=o}^{\infty} rac{\mu^n \mathrm{e}^{-\mu}}{n!} rac{1}{\sigma_n \sqrt{2\pi n}} \mathrm{exp} \Big(rac{(x-nQ_n)^2}{2n\sigma_n^2}\Big) + noise$$

LUMI spectra for high electron rate in integration mode


- Verficiation of single photoelectron spectra in integration mode
- Electron rate 3 GHz
- Special 18-Bit-Analog-Digital-Wandler
- Sampling rate: $15 \cdot 10^6$ samples per second

Measured mean(offset correc.) = $5.631 \cdot 10^{-3} V$ Theo. value[NPE..] = $5.024 \cdot 10^{-3} V$

LUMI spectra for high electron rate in integration mode

- Linearity test of LUMI for electron rate 0-3 GHz
- Plot mean of spectra against electron rate

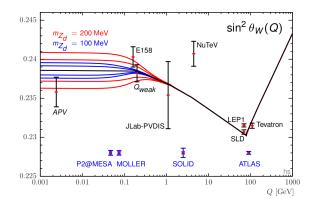
Rate scan 0-3 GHz

No significant fluctuation in the spectra

Mean vs beam rate

Summary and outlook

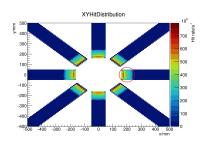
- Luminosity monitor to observe helicity correlated fluctuations in beam parameters and density fluctuations of the target tem
- \bullet Optimized detector design for high beam current \to long run time readout electronics and protection against radiation damage
- Geant4 simulations confirm feasibility of LUMI prototype
- Prototype measurements with MAMI electron beam
- Experimental results agree with theoretical predictions

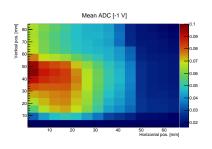

Outlook:

- Development of a concrete prototype
- Support structure for lead shield and realistic attachment to the exit beamline

Thank you for your attention!

Scale dependence of the weak mixing angle $\sin^2(\theta_w)$

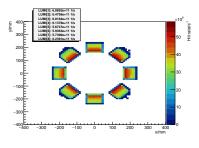

- $\sin^2(\theta_w)$ central parameter of SM
- lacktriangle Deviation from SM prediction o hints for new physics
- Sensitivity to hypothetical new particle/interaction


- Dark Z-Boson
 - New vector Boson
 - Kinematic mass mixing with $\frac{\gamma}{Z}$

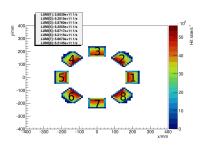
Effects of beam position deviations

- ullet To analyse beam position deviations $\Delta X=1$ mm combine simulation and beam time results
- Initial assumption was point of entry of the beam onto the detector would have a strong influence
- Simulation = particle rate, beam time = ADC value depending on beam position
- lacktriangle Beam time rate $3\cdot 10^9 1/s$, ightarrow ADC value per signal electron

X-Y hit distribution Geant4 simulation



Beam time integration position scan results


$$LUMI_{ADC} signal(x, y)[V] = Rate(x, y) \cdot ADC(x, y)/3 \cdot 10^9$$

False asymmetries from beam position deviations

- Compare particle rate for $\Delta X=1$ and $\Delta X=0$
- ullet Only particles with energy ≤ 21 MeV, air Cherenkov threshold
- Margin of error $1/\sqrt{N}$, N number of simulated entries, statistic error

$$\Delta X = 1 mm$$

 $\Delta X = 0 mm$

Asym.(1) =
$$1.7147 \cdot 10^{-2} \pm 4.7225 \cdot 10^{-4}$$

Asym.(2) = $2.1622 \cdot 10^{-2} \pm 4.5881 \cdot 10^{-4}$
Asym.(3) = $1.1972 \cdot 10^{-2} \pm 4.7392 \cdot 10^{-4}$
Asym.(8) = $1.9753 \cdot 10^{-3} \pm 4.6286 \cdot 10^{-4}$

Asym.(4) =
$$-5.4848 \cdot 10^{-3} \pm 4.6489 \cdot 10^{-4}$$

Asym.(5) = $-1.7062 \cdot 10^{-2} \pm 4.809 \cdot 10^{-4}$
Asym.(6) = $-2.2654 \cdot 10^{-2} \pm 4.6677 \cdot 10^{-4}$
Asym.(7) = $-1.1029 \cdot 10^{-2} \pm 4.7974 \cdot 10^{-4}$

False asymmetries from beam position deviations

- MESA max. beam location difference at target 1 nm
- Asymmetry calculation (1 nm) estimation from fit parameters

$$Asym.(1) = 1.718 \cdot 10^{-8}$$
 $Asym.(4) = -5.5271 \cdot 10^{-9}$ $Asym.(2) = 2.1725 \cdot 10^{-8}$ $Asym.(5) = -1.7092 \cdot 10^{-8}$ $Asym.(6) = -2.2656 \cdot 10^{-8}$ $Asym.(8) = 1.9669 \cdot 10^{-9}$ $Asym.(7) = -1.1003 \cdot 10^{-8}$